Yan Li, Zimu Zhang, Juanjuan Yu, Hongli Yin, Xinran Chu, Haibo Cao, Yanfang Tao, Yongping Zhang, Zhiheng Li, Shuiyan Wu, Yizhou Hu, Frank Zhu, Jizhao Gao, Xiaodong Wang, Bi Zhou, Wanyan Jiao, Yumeng Wu, Yang Yang, Yanling Chen, Ran Zhuo, Ying Yang, Fenli Zhang, Lei Shi, Yixin Hu, Jian Pan, Shaoyan Hu
{"title":"增强子循环蛋白 LDB1 通过与主转录因子合作调节体外 T-ALL 细胞系中 MYB 的表达。","authors":"Yan Li, Zimu Zhang, Juanjuan Yu, Hongli Yin, Xinran Chu, Haibo Cao, Yanfang Tao, Yongping Zhang, Zhiheng Li, Shuiyan Wu, Yizhou Hu, Frank Zhu, Jizhao Gao, Xiaodong Wang, Bi Zhou, Wanyan Jiao, Yumeng Wu, Yang Yang, Yanling Chen, Ran Zhuo, Ying Yang, Fenli Zhang, Lei Shi, Yixin Hu, Jian Pan, Shaoyan Hu","doi":"10.1186/s13046-024-03199-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite significant progress in the prognosis of pediatric T-cell acute lymphoblastic leukemia (T-ALL) in recent decades, a notable portion of children still confronts challenges such as treatment resistance and recurrence, leading to limited options and a poor prognosis. LIM domain-binding protein 1 (LDB1) has been confirmed to exert a crucial role in various physiological and pathological processes. In our research, we aim to elucidate the underlying function and mechanisms of LDB1 within the background of T-ALL.</p><p><strong>Methods: </strong>Employing short hairpin RNA (shRNA) techniques, we delineated the functional impact of LDB1 in T-ALL cell lines. Through the application of RNA-Seq, CUT&Tag, and immunoprecipitation assays, we scrutinized master transcription factors cooperating with LDB1 and identified downstream targets under LDB1 regulation.</p><p><strong>Results: </strong>LDB1 emerges as a critical transcription factor co-activator in cell lines derived from T-ALL. It primarily collaborates with master transcription factors (ERG, ETV6, IRF1) to cooperatively regulate the transcription of downstream target genes. Both in vitro and in vivo experiments affirm the essential fuction of LDB1 in the proliferation and survival of cell lines derived from T-ALL, with MYB identified as a significant downstream target of LDB1.</p><p><strong>Conclusions: </strong>To sum up, our research establishes the pivotal fuction of LDB1 in the tumorigenesis and progression of T-ALL cell lines. Mechanistic insights reveal that LDB1 cooperates with ERG, ETV6, and IRF1 to modulate the expression of downstream effector genes. Furthermore, LDB1 controls MYB through remote enhancer modulation, providing valuable mechanistic insights into its involvement in the progression of T-ALL.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"283"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462673/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancer looping protein LDB1 modulates MYB expression in T-ALL cell lines in vitro by cooperating with master transcription factors.\",\"authors\":\"Yan Li, Zimu Zhang, Juanjuan Yu, Hongli Yin, Xinran Chu, Haibo Cao, Yanfang Tao, Yongping Zhang, Zhiheng Li, Shuiyan Wu, Yizhou Hu, Frank Zhu, Jizhao Gao, Xiaodong Wang, Bi Zhou, Wanyan Jiao, Yumeng Wu, Yang Yang, Yanling Chen, Ran Zhuo, Ying Yang, Fenli Zhang, Lei Shi, Yixin Hu, Jian Pan, Shaoyan Hu\",\"doi\":\"10.1186/s13046-024-03199-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite significant progress in the prognosis of pediatric T-cell acute lymphoblastic leukemia (T-ALL) in recent decades, a notable portion of children still confronts challenges such as treatment resistance and recurrence, leading to limited options and a poor prognosis. LIM domain-binding protein 1 (LDB1) has been confirmed to exert a crucial role in various physiological and pathological processes. In our research, we aim to elucidate the underlying function and mechanisms of LDB1 within the background of T-ALL.</p><p><strong>Methods: </strong>Employing short hairpin RNA (shRNA) techniques, we delineated the functional impact of LDB1 in T-ALL cell lines. Through the application of RNA-Seq, CUT&Tag, and immunoprecipitation assays, we scrutinized master transcription factors cooperating with LDB1 and identified downstream targets under LDB1 regulation.</p><p><strong>Results: </strong>LDB1 emerges as a critical transcription factor co-activator in cell lines derived from T-ALL. It primarily collaborates with master transcription factors (ERG, ETV6, IRF1) to cooperatively regulate the transcription of downstream target genes. Both in vitro and in vivo experiments affirm the essential fuction of LDB1 in the proliferation and survival of cell lines derived from T-ALL, with MYB identified as a significant downstream target of LDB1.</p><p><strong>Conclusions: </strong>To sum up, our research establishes the pivotal fuction of LDB1 in the tumorigenesis and progression of T-ALL cell lines. Mechanistic insights reveal that LDB1 cooperates with ERG, ETV6, and IRF1 to modulate the expression of downstream effector genes. Furthermore, LDB1 controls MYB through remote enhancer modulation, providing valuable mechanistic insights into its involvement in the progression of T-ALL.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"283\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03199-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03199-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Enhancer looping protein LDB1 modulates MYB expression in T-ALL cell lines in vitro by cooperating with master transcription factors.
Background: Despite significant progress in the prognosis of pediatric T-cell acute lymphoblastic leukemia (T-ALL) in recent decades, a notable portion of children still confronts challenges such as treatment resistance and recurrence, leading to limited options and a poor prognosis. LIM domain-binding protein 1 (LDB1) has been confirmed to exert a crucial role in various physiological and pathological processes. In our research, we aim to elucidate the underlying function and mechanisms of LDB1 within the background of T-ALL.
Methods: Employing short hairpin RNA (shRNA) techniques, we delineated the functional impact of LDB1 in T-ALL cell lines. Through the application of RNA-Seq, CUT&Tag, and immunoprecipitation assays, we scrutinized master transcription factors cooperating with LDB1 and identified downstream targets under LDB1 regulation.
Results: LDB1 emerges as a critical transcription factor co-activator in cell lines derived from T-ALL. It primarily collaborates with master transcription factors (ERG, ETV6, IRF1) to cooperatively regulate the transcription of downstream target genes. Both in vitro and in vivo experiments affirm the essential fuction of LDB1 in the proliferation and survival of cell lines derived from T-ALL, with MYB identified as a significant downstream target of LDB1.
Conclusions: To sum up, our research establishes the pivotal fuction of LDB1 in the tumorigenesis and progression of T-ALL cell lines. Mechanistic insights reveal that LDB1 cooperates with ERG, ETV6, and IRF1 to modulate the expression of downstream effector genes. Furthermore, LDB1 controls MYB through remote enhancer modulation, providing valuable mechanistic insights into its involvement in the progression of T-ALL.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.