肝细胞衍生的Igκ通过稳定电子传递黄蛋白亚基α促进脂肪酸β氧化,从而促进肝癌的进展。

IF 11.4 1区 医学 Q1 ONCOLOGY Journal of Experimental & Clinical Cancer Research Pub Date : 2024-10-09 DOI:10.1186/s13046-024-03203-8
Jingjing Guo, Huining Gu, Sha Yin, Jiongming Yang, Qianqian Wang, Weiyan Xu, Yifan Wang, Shenghua Zhang, Xiaofeng Liu, Xunde Xian, Xiaoyan Qiu, Jing Huang
{"title":"肝细胞衍生的Igκ通过稳定电子传递黄蛋白亚基α促进脂肪酸β氧化,从而促进肝癌的进展。","authors":"Jingjing Guo, Huining Gu, Sha Yin, Jiongming Yang, Qianqian Wang, Weiyan Xu, Yifan Wang, Shenghua Zhang, Xiaofeng Liu, Xunde Xian, Xiaoyan Qiu, Jing Huang","doi":"10.1186/s13046-024-03203-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lipid metabolism dysregulation is a key characteristic of hepatocellular carcinoma (HCC) onset and progression. Elevated expression of immunoglobulin (Ig), especially the Igκ free light chain with a unique Vκ4-1/Jκ3 rearrangement in cancer cells, is linked to increased malignancy and has been implicated in colon cancer tumorigenesis. However, the role of Igκ in HCC carcinogenesis remains unclear. The aim of this study was to elucidate the pivotal roles of hepatocyte-derived Igκ in HCC development.</p><p><strong>Methods: </strong>The rearrangement sequence and expression level of hepatocyte-derived Igκ in HCC cells were determined via RT-PCR, Sanger sequencing, immunohistochemistry, and western blot analysis. The function of Igκ in HCC tumorigenesis was assessed by silencing Igκ using siRNA or gRNA in various HCC cell lines. To assess the role of Igκ in HCC pathogenesis in vivo, a mouse model with hepatocyte-specific Igκ knockout and diethylnitrosamine (DEN) and carbon tetrachloride (CCL4)-induced HCC was utilized. The molecular mechanism by which Igκ affects HCC tumorigenesis was investigated through multiomics analyses, quantitative real-time PCR, immunoprecipitation, mass spectrometry, immunofluorescence, and metabolite detection.</p><p><strong>Results: </strong>We confirmed that Igκ, especially Vκ4-1/Jκ3-Igκ, is highly expressed in human HCC cells. Igκ depletion inhibited HCC cell proliferation and migration in vitro, and hepatocyte-specific Igκ deficiency ameliorated HCC progression in mice with DEN and CCL4-induced HCC in vivo. Mechanistically, Vκ4-1/Jκ3-Igκ interacts with electron transfer flavoprotein subunit α (ETFA), delaying its protein degradation. Loss of Igκ led to a decrease in the expression of mitochondrial respiratory chain complexes III and IV, resulting in aberrant fatty acid β-oxidation (FAO) and lipid accumulation, which in turn inhibited HCC cell proliferation and migration.</p><p><strong>Conclusion: </strong>Our findings indicate that the Igκ/ETFA axis deregulates fatty acid β-oxidation, contributing to HCC progression, which suggests that targeting fatty acid metabolism may be an effective HCC treatment strategy. The results of this study suggest that hepatocyte-derived Vκ4-1/Jκ3-Igκ may serve as a promising therapeutic target for HCC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"280"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hepatocyte-derived Igκ promotes HCC progression by stabilizing electron transfer flavoprotein subunit α to facilitate fatty acid β-oxidation.\",\"authors\":\"Jingjing Guo, Huining Gu, Sha Yin, Jiongming Yang, Qianqian Wang, Weiyan Xu, Yifan Wang, Shenghua Zhang, Xiaofeng Liu, Xunde Xian, Xiaoyan Qiu, Jing Huang\",\"doi\":\"10.1186/s13046-024-03203-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lipid metabolism dysregulation is a key characteristic of hepatocellular carcinoma (HCC) onset and progression. Elevated expression of immunoglobulin (Ig), especially the Igκ free light chain with a unique Vκ4-1/Jκ3 rearrangement in cancer cells, is linked to increased malignancy and has been implicated in colon cancer tumorigenesis. However, the role of Igκ in HCC carcinogenesis remains unclear. The aim of this study was to elucidate the pivotal roles of hepatocyte-derived Igκ in HCC development.</p><p><strong>Methods: </strong>The rearrangement sequence and expression level of hepatocyte-derived Igκ in HCC cells were determined via RT-PCR, Sanger sequencing, immunohistochemistry, and western blot analysis. The function of Igκ in HCC tumorigenesis was assessed by silencing Igκ using siRNA or gRNA in various HCC cell lines. To assess the role of Igκ in HCC pathogenesis in vivo, a mouse model with hepatocyte-specific Igκ knockout and diethylnitrosamine (DEN) and carbon tetrachloride (CCL4)-induced HCC was utilized. The molecular mechanism by which Igκ affects HCC tumorigenesis was investigated through multiomics analyses, quantitative real-time PCR, immunoprecipitation, mass spectrometry, immunofluorescence, and metabolite detection.</p><p><strong>Results: </strong>We confirmed that Igκ, especially Vκ4-1/Jκ3-Igκ, is highly expressed in human HCC cells. Igκ depletion inhibited HCC cell proliferation and migration in vitro, and hepatocyte-specific Igκ deficiency ameliorated HCC progression in mice with DEN and CCL4-induced HCC in vivo. Mechanistically, Vκ4-1/Jκ3-Igκ interacts with electron transfer flavoprotein subunit α (ETFA), delaying its protein degradation. Loss of Igκ led to a decrease in the expression of mitochondrial respiratory chain complexes III and IV, resulting in aberrant fatty acid β-oxidation (FAO) and lipid accumulation, which in turn inhibited HCC cell proliferation and migration.</p><p><strong>Conclusion: </strong>Our findings indicate that the Igκ/ETFA axis deregulates fatty acid β-oxidation, contributing to HCC progression, which suggests that targeting fatty acid metabolism may be an effective HCC treatment strategy. The results of this study suggest that hepatocyte-derived Vκ4-1/Jκ3-Igκ may serve as a promising therapeutic target for HCC.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"280\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03203-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03203-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:脂质代谢失调是肝细胞癌(HCC)发病和进展的一个主要特征。免疫球蛋白(Ig),尤其是癌细胞中具有独特 Vκ4-1/Jκ3 重排的 Igκ 游离轻链的高表达与恶性程度的增加有关,并与结肠癌的肿瘤发生有关。然而,Igκ 在 HCC 癌变中的作用仍不清楚。本研究旨在阐明肝细胞来源的 Igκ 在 HCC 发生中的关键作用:方法:通过 RT-PCR、Sanger 测序、免疫组织化学和 Western 印迹分析确定肝细胞源 Igκ 在 HCC 细胞中的重排序列和表达水平。通过使用 siRNA 或 gRNA 在各种 HCC 细胞系中沉默 Igκ 来评估 Igκ 在 HCC 肿瘤发生中的功能。为了评估 Igκ 在 HCC 体内发病机制中的作用,研究人员利用肝细胞特异性 Igκ 基因敲除和二乙基亚硝胺(DEN)及四氯化碳(CCL4)诱导的 HCC 小鼠模型。通过多组学分析、定量实时 PCR、免疫沉淀、质谱、免疫荧光和代谢物检测等方法,研究了 Igκ 影响 HCC 肿瘤发生的分子机制:结果:我们证实了 Igκ,尤其是 Vκ4-1/Jκ3-Igκ 在人 HCC 细胞中的高表达。体外 Igκ 缺失可抑制 HCC 细胞的增殖和迁移,肝细胞特异性 Igκ 缺乏可改善 DEN 和 CCL4 诱导的 HCC 小鼠体内的 HCC 进展。从机理上讲,Vκ4-1/Jκ3-Igκ与电子传递黄蛋白亚基α(ETFA)相互作用,延迟其蛋白质降解。Igκ的缺失导致线粒体呼吸链复合物III和IV的表达减少,导致脂肪酸β氧化(FAO)异常和脂质积累,进而抑制了HCC细胞的增殖和迁移:结论:我们的研究结果表明,Igκ/ETF 轴可抑制脂肪酸的β-氧化,从而导致 HCC 的恶化,这表明靶向脂肪酸代谢可能是一种有效的 HCC 治疗策略。本研究的结果表明,肝细胞衍生的Vκ4-1/Jκ3-Igκ可作为HCC的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hepatocyte-derived Igκ promotes HCC progression by stabilizing electron transfer flavoprotein subunit α to facilitate fatty acid β-oxidation.

Background: Lipid metabolism dysregulation is a key characteristic of hepatocellular carcinoma (HCC) onset and progression. Elevated expression of immunoglobulin (Ig), especially the Igκ free light chain with a unique Vκ4-1/Jκ3 rearrangement in cancer cells, is linked to increased malignancy and has been implicated in colon cancer tumorigenesis. However, the role of Igκ in HCC carcinogenesis remains unclear. The aim of this study was to elucidate the pivotal roles of hepatocyte-derived Igκ in HCC development.

Methods: The rearrangement sequence and expression level of hepatocyte-derived Igκ in HCC cells were determined via RT-PCR, Sanger sequencing, immunohistochemistry, and western blot analysis. The function of Igκ in HCC tumorigenesis was assessed by silencing Igκ using siRNA or gRNA in various HCC cell lines. To assess the role of Igκ in HCC pathogenesis in vivo, a mouse model with hepatocyte-specific Igκ knockout and diethylnitrosamine (DEN) and carbon tetrachloride (CCL4)-induced HCC was utilized. The molecular mechanism by which Igκ affects HCC tumorigenesis was investigated through multiomics analyses, quantitative real-time PCR, immunoprecipitation, mass spectrometry, immunofluorescence, and metabolite detection.

Results: We confirmed that Igκ, especially Vκ4-1/Jκ3-Igκ, is highly expressed in human HCC cells. Igκ depletion inhibited HCC cell proliferation and migration in vitro, and hepatocyte-specific Igκ deficiency ameliorated HCC progression in mice with DEN and CCL4-induced HCC in vivo. Mechanistically, Vκ4-1/Jκ3-Igκ interacts with electron transfer flavoprotein subunit α (ETFA), delaying its protein degradation. Loss of Igκ led to a decrease in the expression of mitochondrial respiratory chain complexes III and IV, resulting in aberrant fatty acid β-oxidation (FAO) and lipid accumulation, which in turn inhibited HCC cell proliferation and migration.

Conclusion: Our findings indicate that the Igκ/ETFA axis deregulates fatty acid β-oxidation, contributing to HCC progression, which suggests that targeting fatty acid metabolism may be an effective HCC treatment strategy. The results of this study suggest that hepatocyte-derived Vκ4-1/Jκ3-Igκ may serve as a promising therapeutic target for HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
期刊最新文献
Targeting of the G9a, DNMT1 and UHRF1 epigenetic complex as an effective strategy against pancreatic ductal adenocarcinoma. AGD1/USP10/METTL13 complexes enhance cancer stem cells proliferation and diminish the therapeutic effect of docetaxel via CD44 m6A modification in castration resistant prostate cancer. PRMT5 inhibition has a potent anti-tumor activity against adenoid cystic carcinoma of salivary glands. ONC213: a novel strategy to resensitize resistant AML cells to venetoclax through induction of mitochondrial stress. Phenotypic diversity of CTCs and tdEVs in liquid biopsies of tumour-draining veins is linked to poor prognosis in colorectal cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1