{"title":"营养因素与身体虚弱:强调功能性营养素在预防和治疗中的作用。","authors":"Rahele Ziaei , Farnaz Shahdadian , Mohammad Bagherniya , Sercan Karav , Amirhossein Sahebkar","doi":"10.1016/j.arr.2024.102532","DOIUrl":null,"url":null,"abstract":"<div><div>Physical frailty, an age-related decline in the physiological capacity and function of various organs, is associated with higher vulnerability to unfavorable health outcomes. The mechanisms proposed for physical frailty including increased inflammation and oxidative stress are closely related to nutritional status. In addition to traditional nutritional factors such as protein malnutrition and nutrient deficiencies, emerging evidence has focused on the role of functional nutrients including polyphenols, carotenoids, probiotics, prebiotics, omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs), β-hydroxy-β-methylbutyrate (HMB), coenzyme Q10 (CoQ10), and L-carnitine in modifying the risk of physical frailty syndrome. Although several clinical trials have suggested the beneficial effects of supplementation with polyphenols, HMB, and prebiotics on frailty indices, the current evidence is still not robust to support recommendations on the routine clinical use of such functional nutrients for the management of frailty. Similarly, the association between CoQ10 and frailty was mainly assessed in observational studies, and more randomized controlled trials are needed in this regard. A limited number of studies have reported the beneficial effect of L-carnitine supplementation on frailty indices. Since carnitine is mainly found in skeletal muscle and its measurement is thus challenging due to ethical constraints, it is necessary to examine the effect of different doses of L-carnitine on frailty and its indices in future studies. A large number of interventional studies evaluated the impact of n-3 PUFA supplementation on physical frailty in the elderly and many of them reported improved physical performance following supplementation, especially when combined with resistance training programs. Although promising findings from experimental and observational studies have been reported on functional nutrients, high-quality evidence from randomized controlled trials as well as detailed mechanistic studies are still required to affirm their role in the prevention and/or treatment of physical frailty. This review aims to describe the current state of research on functional nutrients that may modify the development or prognosis of frailty syndrome.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"101 ","pages":"Article 102532"},"PeriodicalIF":12.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nutritional factors and physical frailty: Highlighting the role of functional nutrients in the prevention and treatment\",\"authors\":\"Rahele Ziaei , Farnaz Shahdadian , Mohammad Bagherniya , Sercan Karav , Amirhossein Sahebkar\",\"doi\":\"10.1016/j.arr.2024.102532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Physical frailty, an age-related decline in the physiological capacity and function of various organs, is associated with higher vulnerability to unfavorable health outcomes. The mechanisms proposed for physical frailty including increased inflammation and oxidative stress are closely related to nutritional status. In addition to traditional nutritional factors such as protein malnutrition and nutrient deficiencies, emerging evidence has focused on the role of functional nutrients including polyphenols, carotenoids, probiotics, prebiotics, omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs), β-hydroxy-β-methylbutyrate (HMB), coenzyme Q10 (CoQ10), and L-carnitine in modifying the risk of physical frailty syndrome. Although several clinical trials have suggested the beneficial effects of supplementation with polyphenols, HMB, and prebiotics on frailty indices, the current evidence is still not robust to support recommendations on the routine clinical use of such functional nutrients for the management of frailty. Similarly, the association between CoQ10 and frailty was mainly assessed in observational studies, and more randomized controlled trials are needed in this regard. A limited number of studies have reported the beneficial effect of L-carnitine supplementation on frailty indices. Since carnitine is mainly found in skeletal muscle and its measurement is thus challenging due to ethical constraints, it is necessary to examine the effect of different doses of L-carnitine on frailty and its indices in future studies. A large number of interventional studies evaluated the impact of n-3 PUFA supplementation on physical frailty in the elderly and many of them reported improved physical performance following supplementation, especially when combined with resistance training programs. Although promising findings from experimental and observational studies have been reported on functional nutrients, high-quality evidence from randomized controlled trials as well as detailed mechanistic studies are still required to affirm their role in the prevention and/or treatment of physical frailty. This review aims to describe the current state of research on functional nutrients that may modify the development or prognosis of frailty syndrome.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"101 \",\"pages\":\"Article 102532\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163724003507\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724003507","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Nutritional factors and physical frailty: Highlighting the role of functional nutrients in the prevention and treatment
Physical frailty, an age-related decline in the physiological capacity and function of various organs, is associated with higher vulnerability to unfavorable health outcomes. The mechanisms proposed for physical frailty including increased inflammation and oxidative stress are closely related to nutritional status. In addition to traditional nutritional factors such as protein malnutrition and nutrient deficiencies, emerging evidence has focused on the role of functional nutrients including polyphenols, carotenoids, probiotics, prebiotics, omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs), β-hydroxy-β-methylbutyrate (HMB), coenzyme Q10 (CoQ10), and L-carnitine in modifying the risk of physical frailty syndrome. Although several clinical trials have suggested the beneficial effects of supplementation with polyphenols, HMB, and prebiotics on frailty indices, the current evidence is still not robust to support recommendations on the routine clinical use of such functional nutrients for the management of frailty. Similarly, the association between CoQ10 and frailty was mainly assessed in observational studies, and more randomized controlled trials are needed in this regard. A limited number of studies have reported the beneficial effect of L-carnitine supplementation on frailty indices. Since carnitine is mainly found in skeletal muscle and its measurement is thus challenging due to ethical constraints, it is necessary to examine the effect of different doses of L-carnitine on frailty and its indices in future studies. A large number of interventional studies evaluated the impact of n-3 PUFA supplementation on physical frailty in the elderly and many of them reported improved physical performance following supplementation, especially when combined with resistance training programs. Although promising findings from experimental and observational studies have been reported on functional nutrients, high-quality evidence from randomized controlled trials as well as detailed mechanistic studies are still required to affirm their role in the prevention and/or treatment of physical frailty. This review aims to describe the current state of research on functional nutrients that may modify the development or prognosis of frailty syndrome.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.