{"title":"动态功能连接组谐波。","authors":"Hoyt Patrick Taylor, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_26","DOIUrl":null,"url":null,"abstract":"<p><p>Functional connectivity (FC) \"gradients\" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the \"gradient\" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"268-276"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic Functional Connectome Harmonics.\",\"authors\":\"Hoyt Patrick Taylor, Pew-Thian Yap\",\"doi\":\"10.1007/978-3-031-43993-3_26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional connectivity (FC) \\\"gradients\\\" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the \\\"gradient\\\" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"14227 \",\"pages\":\"268-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43993-3_26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43993-3_26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

功能连通性(FC)"梯度 "有助于研究与认知层次相关的连通性拓扑结构,并得出功能连通性的主要组织轴线。在这项工作中,我们采用了 "梯度 "方法的一种变体,即求解功能连接的正常模式,从而得到功能连接组谐波。到目前为止,这方面的研究只考虑了静态功能连接,忽略了功能连接的主轴可能取决于其计算的时间尺度。最近的研究表明,瞬间激活模式或大脑状态介导了功能连通性的主要成分,这表明主轴可能不受时间尺度变化的影响。有鉴于此,我们使用不同长度的时间窗计算了功能连接组谐波,并证明它们在不同时间尺度上是稳定的。我们的连接组谐波对应于有意义的大脑状态。我们发现,大脑状态的激活强度以及它们之间的相互关系对个体来说是可重现的。此外,我们还利用时变功能连接组谐波制定了一种简单而优雅的方法,用于计算顶点分辨率下的大脑皮层灵活性,并证明了我们的方法和文献中标准方法的灵活性图之间在质量上的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Functional Connectome Harmonics.

Functional connectivity (FC) "gradients" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the "gradient" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zoom Pattern Signatures for Fetal Ultrasound Structures. Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1