{"title":"具有二次谐波抑制功能的宽带高效连续模式-GF-1 类功率放大器","authors":"Huawei Wu;Qiang Liu;Wang Liu;Guangxing Du;Guolin Li;Dong Cheng","doi":"10.1109/LMWT.2024.3438550","DOIUrl":null,"url":null,"abstract":"This letter presents a wideband high-efficiency continuous-mode class-GF−1 (CCGF−1) power amplifier (PA) with harmonic suppression. An accurate impedance design space (IDS) in the load terminal is provided, considering the influence caused by the input second harmonic voltage. Moreover, the PA design focuses on the output matching network (MN) for suppressing the second harmonic component, which increases drain efficiency (DE). Meanwhile, the proposed CCGF−1 PA achieves close to one octave bandwidth (BW), because the design relaxes the relationship between input fundamental and second harmonic voltage for the first time. To verify the proposed methodology, a prototype is designed and fabricated by using a 10-W gallium nitride (GaN) device. The simulated and measured results show that the CCGF−1 PA achieves the DE of 64.3%–82.7%, the gain of 11.5–15.9 dB, and the output power of 38.2–42.4 dBm over the frequency range from 1.1 to 2 GHz. Compared with existing typical continuous-mode PAs, the design exhibits higher efficiency and wider BW.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 10","pages":"1166-1169"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wideband High-Efficiency Continuous-Mode Class-GF−1 Power Amplifier With Second Harmonic Suppression\",\"authors\":\"Huawei Wu;Qiang Liu;Wang Liu;Guangxing Du;Guolin Li;Dong Cheng\",\"doi\":\"10.1109/LMWT.2024.3438550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a wideband high-efficiency continuous-mode class-GF−1 (CCGF−1) power amplifier (PA) with harmonic suppression. An accurate impedance design space (IDS) in the load terminal is provided, considering the influence caused by the input second harmonic voltage. Moreover, the PA design focuses on the output matching network (MN) for suppressing the second harmonic component, which increases drain efficiency (DE). Meanwhile, the proposed CCGF−1 PA achieves close to one octave bandwidth (BW), because the design relaxes the relationship between input fundamental and second harmonic voltage for the first time. To verify the proposed methodology, a prototype is designed and fabricated by using a 10-W gallium nitride (GaN) device. The simulated and measured results show that the CCGF−1 PA achieves the DE of 64.3%–82.7%, the gain of 11.5–15.9 dB, and the output power of 38.2–42.4 dBm over the frequency range from 1.1 to 2 GHz. Compared with existing typical continuous-mode PAs, the design exhibits higher efficiency and wider BW.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"34 10\",\"pages\":\"1166-1169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636348/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10636348/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Wideband High-Efficiency Continuous-Mode Class-GF−1 Power Amplifier With Second Harmonic Suppression
This letter presents a wideband high-efficiency continuous-mode class-GF−1 (CCGF−1) power amplifier (PA) with harmonic suppression. An accurate impedance design space (IDS) in the load terminal is provided, considering the influence caused by the input second harmonic voltage. Moreover, the PA design focuses on the output matching network (MN) for suppressing the second harmonic component, which increases drain efficiency (DE). Meanwhile, the proposed CCGF−1 PA achieves close to one octave bandwidth (BW), because the design relaxes the relationship between input fundamental and second harmonic voltage for the first time. To verify the proposed methodology, a prototype is designed and fabricated by using a 10-W gallium nitride (GaN) device. The simulated and measured results show that the CCGF−1 PA achieves the DE of 64.3%–82.7%, the gain of 11.5–15.9 dB, and the output power of 38.2–42.4 dBm over the frequency range from 1.1 to 2 GHz. Compared with existing typical continuous-mode PAs, the design exhibits higher efficiency and wider BW.