考虑车辆到电网功能和无功功率支持的有功配电网与电动汽车充电站联合规划

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2023-12-28 DOI:10.17775/CSEEJPES.2023.03930
Yongheng Wang;Xinwei Shen;Yan Xu
{"title":"考虑车辆到电网功能和无功功率支持的有功配电网与电动汽车充电站联合规划","authors":"Yongheng Wang;Xinwei Shen;Yan Xu","doi":"10.17775/CSEEJPES.2023.03930","DOIUrl":null,"url":null,"abstract":"This paper proposes a collaborative planning model for active distribution network (ADN) and electric vehicle (EV) charging stations that fully considers vehicle-to-grid (V2G) function and reactive power support of EVs in different regions. This paper employs a sequential decomposition method based on physical characteristics of the problem, breaking down the holistic problem into two sub-problems for solution. Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles (AEVs) using a mixed-integer linear programming (MILP) model. Subproblem II uses a mixed-integer second-order cone programming (MISOCP) model to plan ADN and retrofit or construct V2G charging stations (V2GCS), as well as multiple distributed generation resources (DGRs). The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning. The presented model is tested in the 47-node ADN in Longgang District, Shenzhen, China, and the IEEE 33-node ADN, demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"2100-2113"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376012","citationCount":"0","resultStr":"{\"title\":\"Joint Planning of Active Distribution Network and EV Charging Stations Considering Vehicle-to-Grid Functionality and Reactive Power Support\",\"authors\":\"Yongheng Wang;Xinwei Shen;Yan Xu\",\"doi\":\"10.17775/CSEEJPES.2023.03930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a collaborative planning model for active distribution network (ADN) and electric vehicle (EV) charging stations that fully considers vehicle-to-grid (V2G) function and reactive power support of EVs in different regions. This paper employs a sequential decomposition method based on physical characteristics of the problem, breaking down the holistic problem into two sub-problems for solution. Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles (AEVs) using a mixed-integer linear programming (MILP) model. Subproblem II uses a mixed-integer second-order cone programming (MISOCP) model to plan ADN and retrofit or construct V2G charging stations (V2GCS), as well as multiple distributed generation resources (DGRs). The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning. The presented model is tested in the 47-node ADN in Longgang District, Shenzhen, China, and the IEEE 33-node ADN, demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 5\",\"pages\":\"2100-2113\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10376012/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10376012/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种主动配电网(ADN)和电动汽车(EV)充电站的协同规划模型,充分考虑了不同地区电动汽车的车对网(V2G)功能和无功功率支持。本文根据问题的物理特征,采用顺序分解法,将整体问题分解为两个子问题进行求解。子问题 I 采用混合整数线性规划(MILP)模型优化自动驾驶电动汽车(AEV)的充电和放电行为。子问题 II 采用混合整数二阶圆锥编程 (MISOCP) 模型来规划 ADN 和改造或建造 V2G 充电站 (V2GCS),以及多个分布式发电资源 (DGR)。本文还分析了 V2GCS 的双向有功-无功功率相互作用对 ADN 规划的影响。本文提出的模型在中国深圳龙岗区 47 个节点的 ADN 和 IEEE 33 个节点的 ADN 中进行了测试,结果表明,在 AEV 渗透率较低的情况下,分解可以显著提高解决大规模问题的速度,同时保持准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Planning of Active Distribution Network and EV Charging Stations Considering Vehicle-to-Grid Functionality and Reactive Power Support
This paper proposes a collaborative planning model for active distribution network (ADN) and electric vehicle (EV) charging stations that fully considers vehicle-to-grid (V2G) function and reactive power support of EVs in different regions. This paper employs a sequential decomposition method based on physical characteristics of the problem, breaking down the holistic problem into two sub-problems for solution. Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles (AEVs) using a mixed-integer linear programming (MILP) model. Subproblem II uses a mixed-integer second-order cone programming (MISOCP) model to plan ADN and retrofit or construct V2G charging stations (V2GCS), as well as multiple distributed generation resources (DGRs). The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning. The presented model is tested in the 47-node ADN in Longgang District, Shenzhen, China, and the IEEE 33-node ADN, demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1