Vyacheslav Kungurtsev, Georgios Korpas, Jakub Marecek, Elton Yechao Zhu
{"title":"变分量子算法的迭代复杂性","authors":"Vyacheslav Kungurtsev, Georgios Korpas, Jakub Marecek, Elton Yechao Zhu","doi":"10.22331/q-2024-10-10-1495","DOIUrl":null,"url":null,"abstract":"There has been much recent interest in near-term applications of quantum computers, i.e., using quantum circuits that have short decoherence times due to hardware limitations. Variational quantum algorithms (VQA), wherein an optimization algorithm implemented on a classical computer evaluates a parametrized quantum circuit as an objective function, are a leading framework in this space. An enormous breadth of algorithms in this framework have been proposed for solving a range of problems in machine learning, forecasting, applied physics, and combinatorial optimization, among others.<br/>\n<br/> In this paper, we analyze the iteration complexity of VQA, that is, the number of steps that VQA requires until its iterates satisfy a surrogate measure of optimality. We argue that although VQA procedures incorporate algorithms that can, in the idealized case, be modeled as classic procedures in the optimization literature, the particular nature of noise in near-term devices invalidates the claim of applicability of off-the-shelf analyses of these algorithms. Specifically, noise makes the evaluations of the objective function via quantum circuits $biased$. Commonly used optimization procedures, such as SPSA and the parameter shift rule, can thus be seen as derivative-free optimization algorithms with biased function evaluations, for which there are currently no iteration complexity guarantees in the literature. We derive the missing guarantees and find that the rate of convergence is unaffected. However, the level of bias contributes unfavorably to both the constant therein, and the asymptotic distance to stationarity, i.e., the more bias, the farther one is guaranteed, at best, to reach a stationary point of the VQA objective.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"1 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iteration Complexity of Variational Quantum Algorithms\",\"authors\":\"Vyacheslav Kungurtsev, Georgios Korpas, Jakub Marecek, Elton Yechao Zhu\",\"doi\":\"10.22331/q-2024-10-10-1495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been much recent interest in near-term applications of quantum computers, i.e., using quantum circuits that have short decoherence times due to hardware limitations. Variational quantum algorithms (VQA), wherein an optimization algorithm implemented on a classical computer evaluates a parametrized quantum circuit as an objective function, are a leading framework in this space. An enormous breadth of algorithms in this framework have been proposed for solving a range of problems in machine learning, forecasting, applied physics, and combinatorial optimization, among others.<br/>\\n<br/> In this paper, we analyze the iteration complexity of VQA, that is, the number of steps that VQA requires until its iterates satisfy a surrogate measure of optimality. We argue that although VQA procedures incorporate algorithms that can, in the idealized case, be modeled as classic procedures in the optimization literature, the particular nature of noise in near-term devices invalidates the claim of applicability of off-the-shelf analyses of these algorithms. Specifically, noise makes the evaluations of the objective function via quantum circuits $biased$. Commonly used optimization procedures, such as SPSA and the parameter shift rule, can thus be seen as derivative-free optimization algorithms with biased function evaluations, for which there are currently no iteration complexity guarantees in the literature. We derive the missing guarantees and find that the rate of convergence is unaffected. However, the level of bias contributes unfavorably to both the constant therein, and the asymptotic distance to stationarity, i.e., the more bias, the farther one is guaranteed, at best, to reach a stationary point of the VQA objective.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-10-10-1495\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-10-1495","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Iteration Complexity of Variational Quantum Algorithms
There has been much recent interest in near-term applications of quantum computers, i.e., using quantum circuits that have short decoherence times due to hardware limitations. Variational quantum algorithms (VQA), wherein an optimization algorithm implemented on a classical computer evaluates a parametrized quantum circuit as an objective function, are a leading framework in this space. An enormous breadth of algorithms in this framework have been proposed for solving a range of problems in machine learning, forecasting, applied physics, and combinatorial optimization, among others.
In this paper, we analyze the iteration complexity of VQA, that is, the number of steps that VQA requires until its iterates satisfy a surrogate measure of optimality. We argue that although VQA procedures incorporate algorithms that can, in the idealized case, be modeled as classic procedures in the optimization literature, the particular nature of noise in near-term devices invalidates the claim of applicability of off-the-shelf analyses of these algorithms. Specifically, noise makes the evaluations of the objective function via quantum circuits $biased$. Commonly used optimization procedures, such as SPSA and the parameter shift rule, can thus be seen as derivative-free optimization algorithms with biased function evaluations, for which there are currently no iteration complexity guarantees in the literature. We derive the missing guarantees and find that the rate of convergence is unaffected. However, the level of bias contributes unfavorably to both the constant therein, and the asymptotic distance to stationarity, i.e., the more bias, the farther one is guaranteed, at best, to reach a stationary point of the VQA objective.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.