利用 k-mers 个性化庞基因组图谱

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Nature genetics Pub Date : 2024-10-10 DOI:10.1038/s41588-024-01954-w
Wei Li
{"title":"利用 k-mers 个性化庞基因组图谱","authors":"Wei Li","doi":"10.1038/s41588-024-01954-w","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 10","pages":"1999-1999"},"PeriodicalIF":31.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalizing pangenome graphs with k-mers\",\"authors\":\"Wei Li\",\"doi\":\"10.1038/s41588-024-01954-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"56 10\",\"pages\":\"1999-1999\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01954-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01954-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

Pangenome图通常用作读图映射的参考。为了提高映射的准确性,Sirén 等人提出了一种基于 k-mer 的单倍型采样方法,这种方法随后被用于构建个性化子图。原始的泛基因组图被分割成不重叠的区块,局部单倍型被标上图特有的 k-聚合体。根据读数中的 k-mer计数,作者能够将矩阵中的 k-mer分为存在(杂合或同源)或不存在,并相应地在每个区块中选择相关的单倍型。采样的单倍型构建了个性化变异图,这实际上是原始图的一个子图。单倍型采样方法是 vg 工具包的一部分,并应用于人类泛基因组参考联盟的泛基因组图谱。与频率过滤图相比,基于 k 单倍型采样的个性化子图是读数映射的最佳参考。它减少了基因分型错误,提高了调用小变异和结构变异基因分型的准确性,为个性化庞基因组参考文献的优化方法提出了未来的方向:Nat.方法 https://doi.org/10.1038/s41592-024-02407-2 (2024)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalizing pangenome graphs with k-mers
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
期刊最新文献
A lifesaving revolution delayed Elucidating the genomic basis of rare pediatric neurological diseases in Central Asia and Transcaucasia Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer’s disease Genome-wide association analysis provides insights into the molecular etiology of dilated cardiomyopathy Genome-wide association study reveals mechanisms underlying dilated cardiomyopathy and myocardial resilience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1