用于多功能应用的具有拉曼活性和高载流子迁移率的压电 GaGeX2(X = N、P 和 As)半导体:第一原理模拟。

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2024-10-10 DOI:10.1039/D4RA06406B
Tuan V. Vu, Nguyen T. Hiep, Vo T. Hoa, Chuong V. Nguyen, Huynh V. Phuc, Bui D. Hoi, A. I. Kartamyshev and Nguyen N. Hieu
{"title":"用于多功能应用的具有拉曼活性和高载流子迁移率的压电 GaGeX2(X = N、P 和 As)半导体:第一原理模拟。","authors":"Tuan V. Vu, Nguyen T. Hiep, Vo T. Hoa, Chuong V. Nguyen, Huynh V. Phuc, Bui D. Hoi, A. I. Kartamyshev and Nguyen N. Hieu","doi":"10.1039/D4RA06406B","DOIUrl":null,"url":null,"abstract":"<p >In the present work, we propose GaGeX<small><sub>2</sub></small> (X = N, P, As) monolayers and explore their structural, vibrational, piezoelectric, electronic, and transport characteristics for multifunctional applications based on first-principles simulations. Our analyses of cohesive energy, phonon dispersion spectra, and <em>ab initio</em> molecular dynamics simulations indicate that the three proposed structures have good energetic, dynamic, and thermodynamic stabilities. The GaGeX<small><sub>2</sub></small> are found as piezoelectric materials with high piezoelectric coefficient <em>d</em><small><sub>11</sub></small> of −1.23 pm V<small><sup>−1</sup></small> for the GaGeAs<small><sub>2</sub></small> monolayer. Furthermore, the results from electronic band structures show that the GaGeX<small><sub>2</sub></small> have semiconductor behaviours with moderate bandgap energies. At the Heyd–Scuseria–Ernzerhof level, the GaGeP<small><sub>2</sub></small> and GaGeAs<small><sub>2</sub></small> exhibit optimal bandgaps for photovoltaic applications of 1.75 and 1.15 eV, respectively. Moreover, to examine the transport features of the GaGeX<small><sub>2</sub></small> monolayers, we calculate their carrier mobility. All three investigated GaGeX<small><sub>2</sub></small> systems have anisotropic carrier mobility in the two in-plane directions for both electrons and holes. Among them, the GaGeAs<small><sub>2</sub></small> monolayer shows the highest electron mobilities of 2270.17 and 1788.59 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> in the <em>x</em> and <em>y</em> directions, respectively. With high electron mobility, large piezoelectric coefficient, and moderate bandgap energy, the GaGeAs<small><sub>2</sub></small> material holds potential applicability for electronic, optoelectronic, piezoelectric, and photovoltaic applications. Thus, our findings not only predict stable GaGeX<small><sub>2</sub></small> structures but also provide promising materials to apply for multifunctional devices.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466001/pdf/","citationCount":"0","resultStr":"{\"title\":\"Piezoelectric GaGeX2 (X = N, P, and As) semiconductors with Raman activity and high carrier mobility for multifunctional applications: a first-principles simulation\",\"authors\":\"Tuan V. Vu, Nguyen T. Hiep, Vo T. Hoa, Chuong V. Nguyen, Huynh V. Phuc, Bui D. Hoi, A. I. Kartamyshev and Nguyen N. Hieu\",\"doi\":\"10.1039/D4RA06406B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the present work, we propose GaGeX<small><sub>2</sub></small> (X = N, P, As) monolayers and explore their structural, vibrational, piezoelectric, electronic, and transport characteristics for multifunctional applications based on first-principles simulations. Our analyses of cohesive energy, phonon dispersion spectra, and <em>ab initio</em> molecular dynamics simulations indicate that the three proposed structures have good energetic, dynamic, and thermodynamic stabilities. The GaGeX<small><sub>2</sub></small> are found as piezoelectric materials with high piezoelectric coefficient <em>d</em><small><sub>11</sub></small> of −1.23 pm V<small><sup>−1</sup></small> for the GaGeAs<small><sub>2</sub></small> monolayer. Furthermore, the results from electronic band structures show that the GaGeX<small><sub>2</sub></small> have semiconductor behaviours with moderate bandgap energies. At the Heyd–Scuseria–Ernzerhof level, the GaGeP<small><sub>2</sub></small> and GaGeAs<small><sub>2</sub></small> exhibit optimal bandgaps for photovoltaic applications of 1.75 and 1.15 eV, respectively. Moreover, to examine the transport features of the GaGeX<small><sub>2</sub></small> monolayers, we calculate their carrier mobility. All three investigated GaGeX<small><sub>2</sub></small> systems have anisotropic carrier mobility in the two in-plane directions for both electrons and holes. Among them, the GaGeAs<small><sub>2</sub></small> monolayer shows the highest electron mobilities of 2270.17 and 1788.59 cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> in the <em>x</em> and <em>y</em> directions, respectively. With high electron mobility, large piezoelectric coefficient, and moderate bandgap energy, the GaGeAs<small><sub>2</sub></small> material holds potential applicability for electronic, optoelectronic, piezoelectric, and photovoltaic applications. Thus, our findings not only predict stable GaGeX<small><sub>2</sub></small> structures but also provide promising materials to apply for multifunctional devices.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466001/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra06406b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra06406b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了 GaGeX2(X = N、P、As)单层,并基于第一原理模拟探讨了它们在多功能应用中的结构、振动、压电、电子和传输特性。我们对内聚能、声子频散谱和 ab initio 分子动力学模拟的分析表明,这三种拟议的结构具有良好的能量、动态和热力学稳定性。GaGeX2 是压电材料,GaGeAs2 单层的压电系数 d 11 高达 -1.23 pm V-1。此外,电子能带结构的研究结果表明,GaGeX2 具有中等能带隙的半导体特性。在 Heyd-Scuseria-Ernzerhof 水平上,GaGeP2 和 GaGeAs2 分别显示出 1.75 和 1.15 eV 的最佳带隙,适合光伏应用。此外,为了研究 GaGeX2 单层的传输特性,我们计算了它们的载流子迁移率。所研究的三个 GaGeX2 系统在电子和空穴的两个面内方向上都具有各向异性的载流子迁移率。其中,GaGeAs2 单层在 x 和 y 方向的电子迁移率最高,分别为 2270.17 和 1788.59 cm2 V-1 s-1。GaGeAs2 材料具有较高的电子迁移率、较大的压电系数和适中的带隙能,有望应用于电子、光电、压电和光伏等领域。因此,我们的研究结果不仅预测了稳定的 GaGeX2 结构,还为多功能器件的应用提供了前景广阔的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piezoelectric GaGeX2 (X = N, P, and As) semiconductors with Raman activity and high carrier mobility for multifunctional applications: a first-principles simulation

In the present work, we propose GaGeX2 (X = N, P, As) monolayers and explore their structural, vibrational, piezoelectric, electronic, and transport characteristics for multifunctional applications based on first-principles simulations. Our analyses of cohesive energy, phonon dispersion spectra, and ab initio molecular dynamics simulations indicate that the three proposed structures have good energetic, dynamic, and thermodynamic stabilities. The GaGeX2 are found as piezoelectric materials with high piezoelectric coefficient d11 of −1.23 pm V−1 for the GaGeAs2 monolayer. Furthermore, the results from electronic band structures show that the GaGeX2 have semiconductor behaviours with moderate bandgap energies. At the Heyd–Scuseria–Ernzerhof level, the GaGeP2 and GaGeAs2 exhibit optimal bandgaps for photovoltaic applications of 1.75 and 1.15 eV, respectively. Moreover, to examine the transport features of the GaGeX2 monolayers, we calculate their carrier mobility. All three investigated GaGeX2 systems have anisotropic carrier mobility in the two in-plane directions for both electrons and holes. Among them, the GaGeAs2 monolayer shows the highest electron mobilities of 2270.17 and 1788.59 cm2 V−1 s−1 in the x and y directions, respectively. With high electron mobility, large piezoelectric coefficient, and moderate bandgap energy, the GaGeAs2 material holds potential applicability for electronic, optoelectronic, piezoelectric, and photovoltaic applications. Thus, our findings not only predict stable GaGeX2 structures but also provide promising materials to apply for multifunctional devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Achieving lysozyme functionalization in PDADMAC–NaPSS saloplastics through salt annealing† Development, cross-validation and greenness assessment of capillary electrophoresis method for determination of ALP in pharmaceutical dosage forms – an alternative to liquid chromatography† Functionalizable poly-terthiophene/Cu2O heterojunction constructed in situ for sensitive photoelectrochemical detection of long non-coding RNA markers† Hyperbranched TEMPO-based polymers as catholytes for redox flow battery applications† Accurate and sensitive dual-response fluorescence detection of microRNAs based on an upconversion nanoamplicon with red emission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1