Yuheng Li , Chao Zhang , Shuyi Li , Zhenzhou Zhu , Xuehua Wang , Giancarlo Cravotto
{"title":"通过各种超声波预处理提高葛根素与葛根淀粉的络合度:相互作用机理分析","authors":"Yuheng Li , Chao Zhang , Shuyi Li , Zhenzhou Zhu , Xuehua Wang , Giancarlo Cravotto","doi":"10.1016/j.ultsonch.2024.107095","DOIUrl":null,"url":null,"abstract":"<div><div>The industrial preparation of kudzu starch (KS) significantly reduces the remaining of flavonoids like puerarin (PU) in the product, weakening its biological activity and making pre-treatments on kudzu crucial. Ultrasonic technique, widely used for modifying biomolecules, can enhance nutrient interactions like those between starch and polyphenols in foods. Thus, a puerarin-kudzu starch (PKS) complex was prepared with the introduction of ultrasonic pretreatment. The results indicated that sonication increased the binding of PU to KS from 0.399 ± 0.01 to 0.609 ± 0.05 mg/g. Particle size analysis and SEM revealed that the particles of the ultrasonic puerarin-kudzu starch complex (UPKS) were larger than those of the untreated complexes. XRD, UV–vis, and FT-IR spectroscopic analyses indicated that hydrogen bonding primarily governs the interaction between PU and KS. Additionally, incorporating PU decreased the starch structure’s orderliness, while ultrasonic treatment altered the helical configuration of straight-chain starch, leading to the formation of a new, ordered structure through the creation of new hydrogen bonds. Additionally, gels formed from UPKS exhibited higher viscosity, elasticity, and shear stress, suggesting that ultrasound significantly altered the intermolecular interactions between PKS. In conclusion, the use of ultrasound under optimal conditions has demonstrated its effectiveness in preparing PKS complexes, highlighting its significant potential to produce high value-added kudzu-based products.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107095"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving complexation of puerarin with kudzu starch by various ultrasonic pretreatment: Interaction mechanism analysis\",\"authors\":\"Yuheng Li , Chao Zhang , Shuyi Li , Zhenzhou Zhu , Xuehua Wang , Giancarlo Cravotto\",\"doi\":\"10.1016/j.ultsonch.2024.107095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The industrial preparation of kudzu starch (KS) significantly reduces the remaining of flavonoids like puerarin (PU) in the product, weakening its biological activity and making pre-treatments on kudzu crucial. Ultrasonic technique, widely used for modifying biomolecules, can enhance nutrient interactions like those between starch and polyphenols in foods. Thus, a puerarin-kudzu starch (PKS) complex was prepared with the introduction of ultrasonic pretreatment. The results indicated that sonication increased the binding of PU to KS from 0.399 ± 0.01 to 0.609 ± 0.05 mg/g. Particle size analysis and SEM revealed that the particles of the ultrasonic puerarin-kudzu starch complex (UPKS) were larger than those of the untreated complexes. XRD, UV–vis, and FT-IR spectroscopic analyses indicated that hydrogen bonding primarily governs the interaction between PU and KS. Additionally, incorporating PU decreased the starch structure’s orderliness, while ultrasonic treatment altered the helical configuration of straight-chain starch, leading to the formation of a new, ordered structure through the creation of new hydrogen bonds. Additionally, gels formed from UPKS exhibited higher viscosity, elasticity, and shear stress, suggesting that ultrasound significantly altered the intermolecular interactions between PKS. In conclusion, the use of ultrasound under optimal conditions has demonstrated its effectiveness in preparing PKS complexes, highlighting its significant potential to produce high value-added kudzu-based products.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"111 \",\"pages\":\"Article 107095\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724003432\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003432","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Improving complexation of puerarin with kudzu starch by various ultrasonic pretreatment: Interaction mechanism analysis
The industrial preparation of kudzu starch (KS) significantly reduces the remaining of flavonoids like puerarin (PU) in the product, weakening its biological activity and making pre-treatments on kudzu crucial. Ultrasonic technique, widely used for modifying biomolecules, can enhance nutrient interactions like those between starch and polyphenols in foods. Thus, a puerarin-kudzu starch (PKS) complex was prepared with the introduction of ultrasonic pretreatment. The results indicated that sonication increased the binding of PU to KS from 0.399 ± 0.01 to 0.609 ± 0.05 mg/g. Particle size analysis and SEM revealed that the particles of the ultrasonic puerarin-kudzu starch complex (UPKS) were larger than those of the untreated complexes. XRD, UV–vis, and FT-IR spectroscopic analyses indicated that hydrogen bonding primarily governs the interaction between PU and KS. Additionally, incorporating PU decreased the starch structure’s orderliness, while ultrasonic treatment altered the helical configuration of straight-chain starch, leading to the formation of a new, ordered structure through the creation of new hydrogen bonds. Additionally, gels formed from UPKS exhibited higher viscosity, elasticity, and shear stress, suggesting that ultrasound significantly altered the intermolecular interactions between PKS. In conclusion, the use of ultrasound under optimal conditions has demonstrated its effectiveness in preparing PKS complexes, highlighting its significant potential to produce high value-added kudzu-based products.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.