光生物调节对永生化脂肪间充质干细胞神经元转分化的影响

IF 2.1 4区 医学 Q3 ENGINEERING, BIOMEDICAL Lasers in Medical Science Pub Date : 2024-10-11 DOI:10.1007/s10103-024-04172-2
Heidi Abrahamse, Anine Crous
{"title":"光生物调节对永生化脂肪间充质干细胞神经元转分化的影响","authors":"Heidi Abrahamse, Anine Crous","doi":"10.1007/s10103-024-04172-2","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived mesenchymal stem cells (ADMSCs) possess the ability to transform into various cell types, including neurons. It has been proposed that the optimization of this transformation can be achieved by using photobiomodulation (PBM). The objective of this laboratory-based investigation was to induce the transformation of immortalized ADMSCs (iADMSCs) into neurons with chemical triggers and then evaluate the supportive effects of PBM at two different wavelengths, 525 nm and 825 nm, each administered at a dose of 5 J/cm<sup>2</sup>, as well as the combined application of these wavelengths. The results revealed that the treated cells retained their stem cell characteristics, although the cells exposed to the green laser exhibited a reduction in the CD44 marker. Furthermore, early, and late neuronal markers were identified using flow cytometry analysis. The biochemical analysis included the assessment of cell morphology, viability, cell proliferation, potential cytotoxicity, and the generation of reactive oxygen species (ROS). The findings of this study indicate that PBM does not harm the differentiation process and may even enhance it, but it necessitates a longer incubation period in the induction medium. These research findings contribute to the validation of stem cell technology for potential applications in in vivo, pre-clinical, and clinical research environments.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photobiomodulation effects on neuronal transdifferentiation of immortalized adipose-derived mesenchymal stem cells.\",\"authors\":\"Heidi Abrahamse, Anine Crous\",\"doi\":\"10.1007/s10103-024-04172-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose-derived mesenchymal stem cells (ADMSCs) possess the ability to transform into various cell types, including neurons. It has been proposed that the optimization of this transformation can be achieved by using photobiomodulation (PBM). The objective of this laboratory-based investigation was to induce the transformation of immortalized ADMSCs (iADMSCs) into neurons with chemical triggers and then evaluate the supportive effects of PBM at two different wavelengths, 525 nm and 825 nm, each administered at a dose of 5 J/cm<sup>2</sup>, as well as the combined application of these wavelengths. The results revealed that the treated cells retained their stem cell characteristics, although the cells exposed to the green laser exhibited a reduction in the CD44 marker. Furthermore, early, and late neuronal markers were identified using flow cytometry analysis. The biochemical analysis included the assessment of cell morphology, viability, cell proliferation, potential cytotoxicity, and the generation of reactive oxygen species (ROS). The findings of this study indicate that PBM does not harm the differentiation process and may even enhance it, but it necessitates a longer incubation period in the induction medium. These research findings contribute to the validation of stem cell technology for potential applications in in vivo, pre-clinical, and clinical research environments.</p>\",\"PeriodicalId\":17978,\"journal\":{\"name\":\"Lasers in Medical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Medical Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10103-024-04172-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04172-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

脂肪间充质干细胞(ADMSCs)具有转化为包括神经元在内的各种细胞类型的能力。有人提出,可以通过光生物调控(PBM)来优化这种转化。这项实验室研究的目的是利用化学触发器诱导永生化 ADMSCs(iADMSCs)转化为神经元,然后评估 525 纳米和 825 纳米两种不同波长的光生物调控(每种波长的剂量为 5 J/cm2)以及这两种波长的联合应用对神经元的支持作用。结果显示,虽然暴露于绿激光的细胞显示出 CD44 标记的减少,但处理过的细胞保留了干细胞的特征。此外,还利用流式细胞术分析确定了早期和晚期神经元标记。生化分析包括细胞形态、活力、细胞增殖、潜在细胞毒性和活性氧(ROS)生成的评估。这项研究的结果表明,PBM 不会损害分化过程,甚至可能会促进分化过程,但需要在诱导培养基中进行更长时间的培养。这些研究结果有助于验证干细胞技术在体内、临床前和临床研究环境中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photobiomodulation effects on neuronal transdifferentiation of immortalized adipose-derived mesenchymal stem cells.

Adipose-derived mesenchymal stem cells (ADMSCs) possess the ability to transform into various cell types, including neurons. It has been proposed that the optimization of this transformation can be achieved by using photobiomodulation (PBM). The objective of this laboratory-based investigation was to induce the transformation of immortalized ADMSCs (iADMSCs) into neurons with chemical triggers and then evaluate the supportive effects of PBM at two different wavelengths, 525 nm and 825 nm, each administered at a dose of 5 J/cm2, as well as the combined application of these wavelengths. The results revealed that the treated cells retained their stem cell characteristics, although the cells exposed to the green laser exhibited a reduction in the CD44 marker. Furthermore, early, and late neuronal markers were identified using flow cytometry analysis. The biochemical analysis included the assessment of cell morphology, viability, cell proliferation, potential cytotoxicity, and the generation of reactive oxygen species (ROS). The findings of this study indicate that PBM does not harm the differentiation process and may even enhance it, but it necessitates a longer incubation period in the induction medium. These research findings contribute to the validation of stem cell technology for potential applications in in vivo, pre-clinical, and clinical research environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lasers in Medical Science
Lasers in Medical Science 医学-工程:生物医学
CiteScore
4.50
自引率
4.80%
发文量
192
审稿时长
3-8 weeks
期刊介绍: Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics. The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.
期刊最新文献
Photobiomodulation effects on neuronal transdifferentiation of immortalized adipose-derived mesenchymal stem cells. Antifungal efficacy of photodynamic therapy on Cryptococcus and Candida species is enhanced by Streptomyces spp. extracts in vitro. Optimizing near infrared laser irradiation and photosensitizer accumulation period for indocyanine green-mediated photodynamic therapy in breast cancer xenografts: a focus on treatment and characterization. Photobiomodulation using red and infrared spectrum light emitting-diode (LED) for the healing of diabetic foot ulcers: a controlled randomized clinical trial. Blue light inhibits cell viability and proliferation in hair follicle stem cells and dermal papilla cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1