用于电化学应用的低温原子层沉积 PbO2。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-10-11 DOI:10.1088/1361-6528/ad8163
Ashley R Bielinski, Jonathan D Emery, Frederick Agyapong-Fordjour, Jessica Jones, Pietro Papa Lopes, Alex B F Martinson
{"title":"用于电化学应用的低温原子层沉积 PbO2。","authors":"Ashley R Bielinski, Jonathan D Emery, Frederick Agyapong-Fordjour, Jessica Jones, Pietro Papa Lopes, Alex B F Martinson","doi":"10.1088/1361-6528/ad8163","DOIUrl":null,"url":null,"abstract":"<p><p>A low temperature atomic layer deposition (ALD) process for PbO<sub>2</sub>was developed using bis(1-dimethylamino-2-methyl-2-propanolate)lead(II), Pb(DMAMP)<sub>2</sub>, and O<sub>3</sub>as the reactants, with a high growth rate of 2.6 Å/cycle. PbO<sub>2</sub>readily reduces under low oxygen partial pressures at moderate temperatures making it challenging to deposit ALD PbO<sub>2</sub>from Pb<sup>2+</sup>precursors. However, thin films deposited with this process showed small crystalline grains of α-PbO<sub>2</sub>and β-PbO<sub>2</sub>, without signs of reduced PbO<i><sub>x</sub></i>phases. The ALD PbO<sub>2</sub>thin films show the high electrical conductivity characteristic of bulk PbO<sub>2</sub>. In situ measurements of ALD PbO<sub>2</sub>film conductivity during growth suggest a reaction mechanism by which sub-surface oxygen mobility contributes to the growth of resistive PbO or PbO<i><sub>x</sub></i>during the Pb(DMAMP)<sub>2</sub>surface reaction step, which is only fully oxidized from Pb<sup>2+</sup>to Pb<sup>4+</sup>during the O<sub>3</sub>reaction step. These films were electrochemically reduced to PbSO<sub>4</sub>in H<sub>2</sub>SO<sub>4</sub>and then reoxidized to PbO<sub>2</sub>, demonstrating their suitability for use as an electrode material for fundamental battery research and other electrochemical applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"35 50","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low temperature atomic layer deposition of PbO<sub>2</sub>for electrochemical applications.\",\"authors\":\"Ashley R Bielinski, Jonathan D Emery, Frederick Agyapong-Fordjour, Jessica Jones, Pietro Papa Lopes, Alex B F Martinson\",\"doi\":\"10.1088/1361-6528/ad8163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A low temperature atomic layer deposition (ALD) process for PbO<sub>2</sub>was developed using bis(1-dimethylamino-2-methyl-2-propanolate)lead(II), Pb(DMAMP)<sub>2</sub>, and O<sub>3</sub>as the reactants, with a high growth rate of 2.6 Å/cycle. PbO<sub>2</sub>readily reduces under low oxygen partial pressures at moderate temperatures making it challenging to deposit ALD PbO<sub>2</sub>from Pb<sup>2+</sup>precursors. However, thin films deposited with this process showed small crystalline grains of α-PbO<sub>2</sub>and β-PbO<sub>2</sub>, without signs of reduced PbO<i><sub>x</sub></i>phases. The ALD PbO<sub>2</sub>thin films show the high electrical conductivity characteristic of bulk PbO<sub>2</sub>. In situ measurements of ALD PbO<sub>2</sub>film conductivity during growth suggest a reaction mechanism by which sub-surface oxygen mobility contributes to the growth of resistive PbO or PbO<i><sub>x</sub></i>during the Pb(DMAMP)<sub>2</sub>surface reaction step, which is only fully oxidized from Pb<sup>2+</sup>to Pb<sup>4+</sup>during the O<sub>3</sub>reaction step. These films were electrochemically reduced to PbSO<sub>4</sub>in H<sub>2</sub>SO<sub>4</sub>and then reoxidized to PbO<sub>2</sub>, demonstrating their suitability for use as an electrode material for fundamental battery research and other electrochemical applications.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\"35 50\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad8163\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8163","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以双(1-二甲氨基-2-甲基-2-丙酸)铅(II)、Pb(DMAMP)2 和 O3 为反应物,开发了一种低温原子层沉积(ALD)二氧化铅工艺,其生长速率高达 2.6 Å/周期。PbO2 在中等温度、低氧分压条件下很容易还原,因此用 Pb2+ 前驱体沉积 ALD PbO2 具有挑战性。然而,采用这种工艺沉积的薄膜显示出 α-PbO2 和 β-PbO2 的小结晶颗粒,没有还原 PbOxphases 的迹象。ALD PbO2 薄膜具有块状 PbO2 的高导电性。对生长过程中 ALD PbO2 薄膜电导率的现场测量表明了一种反应机制,即在 Pb(DMAMP)2 表面反应步骤中,表层下氧的流动性促进了电阻性 PbO 或 PbOx 的生长,而 PbOx 只有在 O3 反应步骤中才从 Pb2+ 完全氧化为 Pb4+。这些薄膜在 H2SO4 中电化学还原成 PbSO4,然后再氧化成 PbO2,这表明它们适合用作基础电池研究和其他电化学应用的电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low temperature atomic layer deposition of PbO2for electrochemical applications.

A low temperature atomic layer deposition (ALD) process for PbO2was developed using bis(1-dimethylamino-2-methyl-2-propanolate)lead(II), Pb(DMAMP)2, and O3as the reactants, with a high growth rate of 2.6 Å/cycle. PbO2readily reduces under low oxygen partial pressures at moderate temperatures making it challenging to deposit ALD PbO2from Pb2+precursors. However, thin films deposited with this process showed small crystalline grains of α-PbO2and β-PbO2, without signs of reduced PbOxphases. The ALD PbO2thin films show the high electrical conductivity characteristic of bulk PbO2. In situ measurements of ALD PbO2film conductivity during growth suggest a reaction mechanism by which sub-surface oxygen mobility contributes to the growth of resistive PbO or PbOxduring the Pb(DMAMP)2surface reaction step, which is only fully oxidized from Pb2+to Pb4+during the O3reaction step. These films were electrochemically reduced to PbSO4in H2SO4and then reoxidized to PbO2, demonstrating their suitability for use as an electrode material for fundamental battery research and other electrochemical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Friction-enhanced formation of Cu microwire on Si wafer. Quantum dots synthesis within ternary III-V nanowire towards light emitters in quantum photonic circuits: a review. Mapping nanoparticle formation and substrate heating effects: a fluence-resolved approach to pulsed laser-induced dewetting. Understanding the competing growth of 2D and 3D transition metal dichalcogenides in a chemical vapor deposition (CVD) reactor. Thermal expansion of boron nitride nanotubes and additively manufactured ceramic nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1