Alberto J Ríos-Flores, Sandra López-Flores, Jose A Martínez-Moreno, Karen Y Falcon-Romero, Gloria G Asencio-Alcudia, Cesar A Sepúlveda-Quiroz, Rafael Martínez-García, Elizabeth Rodríguez-Salazar, Carlos A Alvarez González, Ernesto Maldonado
{"title":"进化古老的热带梭鱼白术的尾鳍再生。","authors":"Alberto J Ríos-Flores, Sandra López-Flores, Jose A Martínez-Moreno, Karen Y Falcon-Romero, Gloria G Asencio-Alcudia, Cesar A Sepúlveda-Quiroz, Rafael Martínez-García, Elizabeth Rodríguez-Salazar, Carlos A Alvarez González, Ernesto Maldonado","doi":"10.1186/s40850-024-00214-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The tropical gar (Atractosteus tropicus), a member of the Lepisosteidae family, is native to regions extending from southeastern Mexico to southern Costa Rica. This species serves as a unique bridge between tetrapods and teleosts due to its phylogenetic position, slow evolutionary rate, dense genetic map, gene similarities with humans, and ease of laboratory cultivation. As a taxonomic sister group to teleosts like the zebrafish (Danio rerio), known for its high regenerative capacity, it remains unclear whether the tropical gar shares a similar ability for regeneration.</p><p><strong>Results: </strong>This study aims to elucidate the caudal fin regeneration process in tropical gar through skeletal and histological staining methods. Juvenile specimens were observed over a two-month period, during which they were fed brine shrimp, and anesthetized with 1% eugenol for caudal fin amputation. Samples were collected at various days post-amputation (dpa). Alcian blue and alizarin red staining were used to highlight skeletal regeneration, particularly the formation of new cartilage, while histological staining with hematoxylin and eosin was performed to observe tissue regeneration at the amputation site.</p><p><strong>Conclusions: </strong>The findings reveal a remarkable ability for caudal fin regeneration in juvenile tropical gar. Given the Garfish evolutionary relationship with teleosts, this opens new avenues for research into tissue regeneration across different groups of Actinopterygii.</p>","PeriodicalId":48590,"journal":{"name":"BMC Zoology","volume":"9 1","pages":"26"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465863/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regeneration of the caudal fin of the evolutionary ancient tropical gar Atractosteus tropicus.\",\"authors\":\"Alberto J Ríos-Flores, Sandra López-Flores, Jose A Martínez-Moreno, Karen Y Falcon-Romero, Gloria G Asencio-Alcudia, Cesar A Sepúlveda-Quiroz, Rafael Martínez-García, Elizabeth Rodríguez-Salazar, Carlos A Alvarez González, Ernesto Maldonado\",\"doi\":\"10.1186/s40850-024-00214-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The tropical gar (Atractosteus tropicus), a member of the Lepisosteidae family, is native to regions extending from southeastern Mexico to southern Costa Rica. This species serves as a unique bridge between tetrapods and teleosts due to its phylogenetic position, slow evolutionary rate, dense genetic map, gene similarities with humans, and ease of laboratory cultivation. As a taxonomic sister group to teleosts like the zebrafish (Danio rerio), known for its high regenerative capacity, it remains unclear whether the tropical gar shares a similar ability for regeneration.</p><p><strong>Results: </strong>This study aims to elucidate the caudal fin regeneration process in tropical gar through skeletal and histological staining methods. Juvenile specimens were observed over a two-month period, during which they were fed brine shrimp, and anesthetized with 1% eugenol for caudal fin amputation. Samples were collected at various days post-amputation (dpa). Alcian blue and alizarin red staining were used to highlight skeletal regeneration, particularly the formation of new cartilage, while histological staining with hematoxylin and eosin was performed to observe tissue regeneration at the amputation site.</p><p><strong>Conclusions: </strong>The findings reveal a remarkable ability for caudal fin regeneration in juvenile tropical gar. Given the Garfish evolutionary relationship with teleosts, this opens new avenues for research into tissue regeneration across different groups of Actinopterygii.</p>\",\"PeriodicalId\":48590,\"journal\":{\"name\":\"BMC Zoology\",\"volume\":\"9 1\",\"pages\":\"26\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40850-024-00214-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40850-024-00214-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Regeneration of the caudal fin of the evolutionary ancient tropical gar Atractosteus tropicus.
Background: The tropical gar (Atractosteus tropicus), a member of the Lepisosteidae family, is native to regions extending from southeastern Mexico to southern Costa Rica. This species serves as a unique bridge between tetrapods and teleosts due to its phylogenetic position, slow evolutionary rate, dense genetic map, gene similarities with humans, and ease of laboratory cultivation. As a taxonomic sister group to teleosts like the zebrafish (Danio rerio), known for its high regenerative capacity, it remains unclear whether the tropical gar shares a similar ability for regeneration.
Results: This study aims to elucidate the caudal fin regeneration process in tropical gar through skeletal and histological staining methods. Juvenile specimens were observed over a two-month period, during which they were fed brine shrimp, and anesthetized with 1% eugenol for caudal fin amputation. Samples were collected at various days post-amputation (dpa). Alcian blue and alizarin red staining were used to highlight skeletal regeneration, particularly the formation of new cartilage, while histological staining with hematoxylin and eosin was performed to observe tissue regeneration at the amputation site.
Conclusions: The findings reveal a remarkable ability for caudal fin regeneration in juvenile tropical gar. Given the Garfish evolutionary relationship with teleosts, this opens new avenues for research into tissue regeneration across different groups of Actinopterygii.
BMC ZoologyAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
2.30
自引率
6.20%
发文量
53
审稿时长
24 weeks
期刊介绍:
BMC Zoology is an open access, peer-reviewed journal that considers articles on all aspects of zoology, including physiology, mechanistic and functional studies, anatomy, life history, behavior, signalling and communication, cognition, parasitism, taxonomy and conservation.