将新方法(NAMs)数据纳入剂量反应评估:未来就是现在!

IF 6.4 2区 医学 Q1 ENVIRONMENTAL SCIENCES Journal of Toxicology and Environmental Health-Part B-Critical Reviews Pub Date : 2024-10-10 DOI:10.1080/10937404.2024.2412571
En-Hsuan Lu, Ivan Rusyn, Weihsueh A Chiu
{"title":"将新方法(NAMs)数据纳入剂量反应评估:未来就是现在!","authors":"En-Hsuan Lu, Ivan Rusyn, Weihsueh A Chiu","doi":"10.1080/10937404.2024.2412571","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory dose-response assessments traditionally rely on <i>in vivo</i> data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several \"traditional\" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including <i>in silico</i>, <i>in vitro</i>, and <i>in vivo</i> approaches, might be applied across KDMs. Further, the false dichotomy between \"traditional\" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve <i>in vitro</i> dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":" ","pages":"1-35"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now!\",\"authors\":\"En-Hsuan Lu, Ivan Rusyn, Weihsueh A Chiu\",\"doi\":\"10.1080/10937404.2024.2412571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regulatory dose-response assessments traditionally rely on <i>in vivo</i> data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several \\\"traditional\\\" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including <i>in silico</i>, <i>in vitro</i>, and <i>in vivo</i> approaches, might be applied across KDMs. Further, the false dichotomy between \\\"traditional\\\" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve <i>in vitro</i> dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.</p>\",\"PeriodicalId\":49971,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health-Part B-Critical Reviews\",\"volume\":\" \",\"pages\":\"1-35\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health-Part B-Critical Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10937404.2024.2412571\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2024.2412571","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

监管机构的剂量反应评估传统上依赖于体内数据和默认假设。新方法(NAMs)提供了大量机会,既能增强传统的剂量-反应评估,又能加快对缺乏数据的新化学品的评估。本综述旨在通过一个统一的概念框架来确定新方法的潜在用途,该框架将毒性值的推导划分为五个连续的关键剂量-反应模块(KDMs):(1) 出发点(POD)确定,(2) 试验系统对人类(如物种间)毒物动力学和 (3) 毒力动力学,(4) 人类群体(物种内)毒力动力学变异,以及 (5) 毒物代谢动力学。在使用几种 "传统 "剂量-反应评估来说明这一框架后,对现有的 NAM(包括硅学、体外和体内方法)可能适用于 KDM 的情况进行了综述。此外,"传统 "数据源和 NAMs 派生数据源之间错误的二分法被打破,剂量-反应评估被组织成一个矩阵,每个 KDM 都有精度和置信度不断提高的层级:第 0 层:默认值/通用值,第 1 层:计算预测,第 2 层:替代测量,第 3 层:直接测量。这些研究结果表明,尽管许多出版物都提倡在 KDM 中使用 NAM(1)用于 POD 测定和(5)用于人类毒代动力学,但建议的 KDM 和层级矩阵揭示了 NAM 在其他 KDM 中整合的更多直接机会。此外,还确定了开发 NAM 的关键需求,以改进体外剂量测定并量化测试系统和人群毒物动力学。总之,在剂量-反应评估的各个步骤中扩大对 NAM 的整合,有望产生更高的吞吐量、更少的动物依赖性和更科学的毒性值,从而保护人类健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now!

Regulatory dose-response assessments traditionally rely on in vivo data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including in silico, in vitro, and in vivo approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve in vitro dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
6.90%
发文量
13
审稿时长
>24 weeks
期刊介绍: "Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health. Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews." The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.
期刊最新文献
Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1