通过席夫碱裂解法检测草甘膦和甲磺胺草酮的嘌呤荧光衍生探针。

Xuanzuo Tao , Yanxia Mao , Anguan Wang , Zhihong Zeng , Shaojun Zheng , Chunhui Jiang , Shu-Yang Chen , Hongfei Lu
{"title":"通过席夫碱裂解法检测草甘膦和甲磺胺草酮的嘌呤荧光衍生探针。","authors":"Xuanzuo Tao ,&nbsp;Yanxia Mao ,&nbsp;Anguan Wang ,&nbsp;Zhihong Zeng ,&nbsp;Shaojun Zheng ,&nbsp;Chunhui Jiang ,&nbsp;Shu-Yang Chen ,&nbsp;Hongfei Lu","doi":"10.1016/j.saa.2024.125254","DOIUrl":null,"url":null,"abstract":"<div><div>A fluorescent probe derived from purine with Schiff base moiety was developed for the recognization of glyphosate and mesotrione. The detected glyphosate and mesotrione can lead to the dissociation of the Schiff base probe to enhance the fluorescence <em>via</em> a turn-off PET process. Mechanism study revealed that the synergistic effect of the phosphoric acid and the secondary amine moieties in glyphosate results in the bond cleavage of the Schiff base probe. Quantitative measurements of glyphosate and mesotrione were achieved with the detection limits of 17.2 nM and 484.32 nM, respectively. Meanwhile, the detection of glyphosate pesticide in real samples and cells was also conducted, demonstrating the good practicality and cytocompatibility of the probe.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A purine fluorescent derived probe assay for glyphosate and mesotrione via Schiff base cleavage\",\"authors\":\"Xuanzuo Tao ,&nbsp;Yanxia Mao ,&nbsp;Anguan Wang ,&nbsp;Zhihong Zeng ,&nbsp;Shaojun Zheng ,&nbsp;Chunhui Jiang ,&nbsp;Shu-Yang Chen ,&nbsp;Hongfei Lu\",\"doi\":\"10.1016/j.saa.2024.125254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A fluorescent probe derived from purine with Schiff base moiety was developed for the recognization of glyphosate and mesotrione. The detected glyphosate and mesotrione can lead to the dissociation of the Schiff base probe to enhance the fluorescence <em>via</em> a turn-off PET process. Mechanism study revealed that the synergistic effect of the phosphoric acid and the secondary amine moieties in glyphosate results in the bond cleavage of the Schiff base probe. Quantitative measurements of glyphosate and mesotrione were achieved with the detection limits of 17.2 nM and 484.32 nM, respectively. Meanwhile, the detection of glyphosate pesticide in real samples and cells was also conducted, demonstrating the good practicality and cytocompatibility of the probe.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142524014203\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524014203","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

为识别草甘膦和甲磺隆,我们开发了一种带有希夫碱分子的嘌呤荧光探针。检测到的草甘膦和甲磺隆可导致希夫碱探针解离,从而通过关断 PET 过程增强荧光。机理研究表明,草甘膦中的磷酸和仲胺分子的协同作用导致席夫碱探针的键裂解。草甘膦和间三嗪的定量检测限分别为 17.2 nM 和 484.32 nM。同时,还在实际样品和细胞中进行了草甘膦农药的检测,证明该探针具有良好的实用性和细胞相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A purine fluorescent derived probe assay for glyphosate and mesotrione via Schiff base cleavage
A fluorescent probe derived from purine with Schiff base moiety was developed for the recognization of glyphosate and mesotrione. The detected glyphosate and mesotrione can lead to the dissociation of the Schiff base probe to enhance the fluorescence via a turn-off PET process. Mechanism study revealed that the synergistic effect of the phosphoric acid and the secondary amine moieties in glyphosate results in the bond cleavage of the Schiff base probe. Quantitative measurements of glyphosate and mesotrione were achieved with the detection limits of 17.2 nM and 484.32 nM, respectively. Meanwhile, the detection of glyphosate pesticide in real samples and cells was also conducted, demonstrating the good practicality and cytocompatibility of the probe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
期刊最新文献
∼2 μm broadband luminescence in Tm3+/Ho3+/Er3+-doped tellurite glass Assessment of the binding mechanism of ergothioneine to human serum albumin: Multi-spectroscopy, molecular docking and molecular dynamic simulation Determination of aflatoxin B1 in wheat using Raman spectroscopy combined with chemometrics Mn4+-activated Sc-based hexafluoride red phosphor K5Sc3F14: Synthesis, luminescence, and its applications in blue-pump WLEDs Simultaneous quantitative analysis of multiple metabolites using label-free surface-enhanced Raman spectroscopy and explainable deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1