纳米封闭的 FeCo2O4 嵌入式陶瓷膜可在过硫酸盐活化过程中调节电子转移,从而选择性地产生用于水净化的单线态氧

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-08-27 DOI:10.1021/acs.est.4c0756610.1021/acs.est.4c07566
Peng Xu, Rui Wei, Peng Wang*, Tianyao Shen, Tong Zheng* and Guangshan Zhang*, 
{"title":"纳米封闭的 FeCo2O4 嵌入式陶瓷膜可在过硫酸盐活化过程中调节电子转移,从而选择性地产生用于水净化的单线态氧","authors":"Peng Xu,&nbsp;Rui Wei,&nbsp;Peng Wang*,&nbsp;Tianyao Shen,&nbsp;Tong Zheng* and Guangshan Zhang*,&nbsp;","doi":"10.1021/acs.est.4c0756610.1021/acs.est.4c07566","DOIUrl":null,"url":null,"abstract":"<p >Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs), as a promising technology for water decontamination, are constrained by low reaction kinetics due to limited reaction selectivity and mass transfer. Herein, we designed a nanoconfined FeCo<sub>2</sub>O<sub>4</sub>-embedded ceramic membrane (FeCo<sub>2</sub>O<sub>4</sub>−CM) under flow-through pattern for PMS activation. Confining PMS and FeCo<sub>2</sub>O<sub>4</sub> within nanochannels (3.0−4.7 nm) enhanced adsorption interactions (−7.84 eV vs −2.20 eV), thus boosting mass transfer. Nanoconfinement effect regulated electron transfer pathways from PMS to FeCo<sub>2</sub>O<sub>4</sub>−CM by modulating the active site transformation to ≡Co(III) in nanoconfined FeCo<sub>2</sub>O<sub>4</sub>−CM, enabling selectively generating <sup>1</sup>O<sub>2</sub>. The primary role of <sup>1</sup>O<sub>2</sub> in the nanoconfined system was confirmed by kinetic solvent isotope experiments and indicative anthracene endoperoxide (DPAO<sub>2</sub>). The system enabled 100% removal of atrazine (ATZ) within a hydraulic retention time of 2.124 ms, demonstrating a rate constant over 5 orders of magnitude higher than the nonconfined system (3.50 × 10<sup>3</sup> s<sup>−1</sup> vs 0.42 min<sup>−1</sup>). It also exhibited strong resilience to pH variations (3.3−9.0) and coexisting substances, demonstrating excellent stability indicated by consistent 100% ATZ removal for 14 days. This study sheds light on regulating electron transfer pathways to selectively generate <sup>1</sup>O<sub>2</sub> through the nanoconfinement effect, boosting the practical application of PMS-based AOPs in environmental remediation and potentially applying them to various other AOPs.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nanoconfined FeCo2O4-Embedded Ceramic Membrane Regulates Electron Transfer in Peroxymonosulfate Activation to Selectively Generate Singlet Oxygen for Water Decontamination\",\"authors\":\"Peng Xu,&nbsp;Rui Wei,&nbsp;Peng Wang*,&nbsp;Tianyao Shen,&nbsp;Tong Zheng* and Guangshan Zhang*,&nbsp;\",\"doi\":\"10.1021/acs.est.4c0756610.1021/acs.est.4c07566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs), as a promising technology for water decontamination, are constrained by low reaction kinetics due to limited reaction selectivity and mass transfer. Herein, we designed a nanoconfined FeCo<sub>2</sub>O<sub>4</sub>-embedded ceramic membrane (FeCo<sub>2</sub>O<sub>4</sub>−CM) under flow-through pattern for PMS activation. Confining PMS and FeCo<sub>2</sub>O<sub>4</sub> within nanochannels (3.0−4.7 nm) enhanced adsorption interactions (−7.84 eV vs −2.20 eV), thus boosting mass transfer. Nanoconfinement effect regulated electron transfer pathways from PMS to FeCo<sub>2</sub>O<sub>4</sub>−CM by modulating the active site transformation to ≡Co(III) in nanoconfined FeCo<sub>2</sub>O<sub>4</sub>−CM, enabling selectively generating <sup>1</sup>O<sub>2</sub>. The primary role of <sup>1</sup>O<sub>2</sub> in the nanoconfined system was confirmed by kinetic solvent isotope experiments and indicative anthracene endoperoxide (DPAO<sub>2</sub>). The system enabled 100% removal of atrazine (ATZ) within a hydraulic retention time of 2.124 ms, demonstrating a rate constant over 5 orders of magnitude higher than the nonconfined system (3.50 × 10<sup>3</sup> s<sup>−1</sup> vs 0.42 min<sup>−1</sup>). It also exhibited strong resilience to pH variations (3.3−9.0) and coexisting substances, demonstrating excellent stability indicated by consistent 100% ATZ removal for 14 days. This study sheds light on regulating electron transfer pathways to selectively generate <sup>1</sup>O<sub>2</sub> through the nanoconfinement effect, boosting the practical application of PMS-based AOPs in environmental remediation and potentially applying them to various other AOPs.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c07566\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c07566","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

基于过一硫酸盐(PMS)的高级氧化工艺(AOPs)是一种前景广阔的水净化技术,但由于反应选择性和传质有限,其反应动力学受到限制。在此,我们设计了一种纳米密闭的 FeCo2O4 嵌入式陶瓷膜(FeCo2O4-CM),用于 PMS 的活化。将 PMS 和 FeCo2O4 限制在纳米通道(3.0-4.7 nm)内增强了吸附相互作用(-7.84 eV vs -2.20 eV),从而促进了传质。纳米细化效应通过调节纳米细化 FeCo2O4-CM 中活性位点向≡Co(III)的转变,调节了从 PMS 到 FeCo2O4-CM 的电子传递途径,从而有选择性地生成了 1O2。动力学溶剂同位素实验和指示性蒽过氧化物(DPAO2)证实了 1O2 在纳米封闭系统中的主要作用。该系统可在 2.124 毫秒的水力停留时间内 100% 去除阿特拉津 (ATZ),其速率常数比非封闭系统高出 5 个数量级以上(3.50 × 103 s-1 vs 0.42 min-1)。它还对 pH 值变化(3.3-9.0)和共存物质表现出很强的适应能力,14 天内 ATZ 的去除率始终保持在 100%,显示出极佳的稳定性。这项研究揭示了通过纳米融合效应调节电子传递途径以选择性地生成 1O2,从而促进了基于 PMS 的 AOP 在环境修复中的实际应用,并有可能将其应用于其他各种 AOP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nanoconfined FeCo2O4-Embedded Ceramic Membrane Regulates Electron Transfer in Peroxymonosulfate Activation to Selectively Generate Singlet Oxygen for Water Decontamination

Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs), as a promising technology for water decontamination, are constrained by low reaction kinetics due to limited reaction selectivity and mass transfer. Herein, we designed a nanoconfined FeCo2O4-embedded ceramic membrane (FeCo2O4−CM) under flow-through pattern for PMS activation. Confining PMS and FeCo2O4 within nanochannels (3.0−4.7 nm) enhanced adsorption interactions (−7.84 eV vs −2.20 eV), thus boosting mass transfer. Nanoconfinement effect regulated electron transfer pathways from PMS to FeCo2O4−CM by modulating the active site transformation to ≡Co(III) in nanoconfined FeCo2O4−CM, enabling selectively generating 1O2. The primary role of 1O2 in the nanoconfined system was confirmed by kinetic solvent isotope experiments and indicative anthracene endoperoxide (DPAO2). The system enabled 100% removal of atrazine (ATZ) within a hydraulic retention time of 2.124 ms, demonstrating a rate constant over 5 orders of magnitude higher than the nonconfined system (3.50 × 103 s−1 vs 0.42 min−1). It also exhibited strong resilience to pH variations (3.3−9.0) and coexisting substances, demonstrating excellent stability indicated by consistent 100% ATZ removal for 14 days. This study sheds light on regulating electron transfer pathways to selectively generate 1O2 through the nanoconfinement effect, boosting the practical application of PMS-based AOPs in environmental remediation and potentially applying them to various other AOPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Electrochemical Acid-Base Transport Limitation Principle for Low Electroactive Analyte Sensing in Wastewater Monitoring. Selective O2-to-H2O2 Electrosynthesis by a High-Performance, Single-Pass Electrofiltration System Using Ibuprofen-Laden CNT Membranes. Regulation of Ocean Surface Currents and Seasonal Sea Ice Variations on the Occurrence and Transport of Organophosphate Esters in the Central Arctic Ocean. Rethinking Porosity-Based Diffusivity Estimates for Sorptive Gas Transport at Variable Temperatures. Benzo(a)anthracene Targeting SLC1A5 to Synergistically Enhance PAH Mixture Toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1