Andrej Gill, Robert M. Gillenkirch, Julia Ortner, Louis Velthuis
{"title":"依赖算法建议的动态变化","authors":"Andrej Gill, Robert M. Gillenkirch, Julia Ortner, Louis Velthuis","doi":"10.1002/bdm.2414","DOIUrl":null,"url":null,"abstract":"<p>This study examines the dynamics of human reliance on algorithmic advice in a situation with strategic interaction. Participants played the strategic game of Rock–Paper–Scissors (RPS) under various conditions, receiving algorithmic decision support while facing human or algorithmic opponents. Results indicate that participants often underutilize algorithmic recommendations, particularly after early errors, but increasingly rely on the algorithm following successful early predictions. This behavior demonstrates a sensitivity to decision outcomes, with asymmetry: rejecting advice consistently reinforces rejecting advice again while accepting advice leads to varied reactions based on outcomes. We also investigate how personal characteristics, such as algorithm familiarity and domain experience, influence reliance on algorithmic advice. Both factors positively correlate with increased reliance, and algorithm familiarity significantly moderates the relationship between outcome feedback and reliance. Facing an algorithmic opponent increases advice rejection frequencies, and the determinants of trust and interaction dynamics differ from those with human opponents. Our findings enhance the understanding of algorithm aversion and reliance on AI, suggesting that increasing familiarity with algorithms can improve their integration into decision-making processes.</p>","PeriodicalId":48112,"journal":{"name":"Journal of Behavioral Decision Making","volume":"37 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bdm.2414","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Reliance on Algorithmic Advice\",\"authors\":\"Andrej Gill, Robert M. Gillenkirch, Julia Ortner, Louis Velthuis\",\"doi\":\"10.1002/bdm.2414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the dynamics of human reliance on algorithmic advice in a situation with strategic interaction. Participants played the strategic game of Rock–Paper–Scissors (RPS) under various conditions, receiving algorithmic decision support while facing human or algorithmic opponents. Results indicate that participants often underutilize algorithmic recommendations, particularly after early errors, but increasingly rely on the algorithm following successful early predictions. This behavior demonstrates a sensitivity to decision outcomes, with asymmetry: rejecting advice consistently reinforces rejecting advice again while accepting advice leads to varied reactions based on outcomes. We also investigate how personal characteristics, such as algorithm familiarity and domain experience, influence reliance on algorithmic advice. Both factors positively correlate with increased reliance, and algorithm familiarity significantly moderates the relationship between outcome feedback and reliance. Facing an algorithmic opponent increases advice rejection frequencies, and the determinants of trust and interaction dynamics differ from those with human opponents. Our findings enhance the understanding of algorithm aversion and reliance on AI, suggesting that increasing familiarity with algorithms can improve their integration into decision-making processes.</p>\",\"PeriodicalId\":48112,\"journal\":{\"name\":\"Journal of Behavioral Decision Making\",\"volume\":\"37 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bdm.2414\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Behavioral Decision Making\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdm.2414\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Behavioral Decision Making","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdm.2414","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
This study examines the dynamics of human reliance on algorithmic advice in a situation with strategic interaction. Participants played the strategic game of Rock–Paper–Scissors (RPS) under various conditions, receiving algorithmic decision support while facing human or algorithmic opponents. Results indicate that participants often underutilize algorithmic recommendations, particularly after early errors, but increasingly rely on the algorithm following successful early predictions. This behavior demonstrates a sensitivity to decision outcomes, with asymmetry: rejecting advice consistently reinforces rejecting advice again while accepting advice leads to varied reactions based on outcomes. We also investigate how personal characteristics, such as algorithm familiarity and domain experience, influence reliance on algorithmic advice. Both factors positively correlate with increased reliance, and algorithm familiarity significantly moderates the relationship between outcome feedback and reliance. Facing an algorithmic opponent increases advice rejection frequencies, and the determinants of trust and interaction dynamics differ from those with human opponents. Our findings enhance the understanding of algorithm aversion and reliance on AI, suggesting that increasing familiarity with algorithms can improve their integration into decision-making processes.
期刊介绍:
The Journal of Behavioral Decision Making is a multidisciplinary journal with a broad base of content and style. It publishes original empirical reports, critical review papers, theoretical analyses and methodological contributions. The Journal also features book, software and decision aiding technique reviews, abstracts of important articles published elsewhere and teaching suggestions. The objective of the Journal is to present and stimulate behavioral research on decision making and to provide a forum for the evaluation of complementary, contrasting and conflicting perspectives. These perspectives include psychology, management science, sociology, political science and economics. Studies of behavioral decision making in naturalistic and applied settings are encouraged.