{"title":"隐含监督前馈神经网络的优化信号流分析新方法","authors":"Farhan Ali, He Yigang","doi":"10.1049/2024/2819057","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The analysis and interpretation of enormous amounts of data generated by 5G networks present several challenges related to noise, precision, and feasibility validation. Therefore, this study aims to evaluate the effectiveness of channel equalisation in the network and enhance it by distributing signals over all subcarriers and symbols. The error-free signal received ensures the reliable transmission of signals in the network connection. These simulations were undertaken to fulfil the needs of and adapt the transmission properties according to the specific conditions of the channel. The dataset consists of artificially generated radio waves to train signals through neural networks (NNs) and machine learning algorithms to detect errors properly. The primary objective is to achieve optimal signal performance. In this regard, an artificial neural network (ANN) was initially employed, explicitly utilising the back-propagation technique and a feedforward multilayer perceptron (MLP). In addition, the signals were subjected to train using a real-time simulator, employing feedforward neural network and support vector machine (SVM) to validate the proposed methodology. Feedforward MLP achieved the highest performance in simulations compared to SVM. The scheme is promising to achieve optimal signal performance in real-time.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2819057","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach of Optimal Signal Streaming Analysis Implicated Supervised Feedforward Neural Networks\",\"authors\":\"Farhan Ali, He Yigang\",\"doi\":\"10.1049/2024/2819057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The analysis and interpretation of enormous amounts of data generated by 5G networks present several challenges related to noise, precision, and feasibility validation. Therefore, this study aims to evaluate the effectiveness of channel equalisation in the network and enhance it by distributing signals over all subcarriers and symbols. The error-free signal received ensures the reliable transmission of signals in the network connection. These simulations were undertaken to fulfil the needs of and adapt the transmission properties according to the specific conditions of the channel. The dataset consists of artificially generated radio waves to train signals through neural networks (NNs) and machine learning algorithms to detect errors properly. The primary objective is to achieve optimal signal performance. In this regard, an artificial neural network (ANN) was initially employed, explicitly utilising the back-propagation technique and a feedforward multilayer perceptron (MLP). In addition, the signals were subjected to train using a real-time simulator, employing feedforward neural network and support vector machine (SVM) to validate the proposed methodology. Feedforward MLP achieved the highest performance in simulations compared to SVM. The scheme is promising to achieve optimal signal performance in real-time.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2819057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/2819057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/2819057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel Approach of Optimal Signal Streaming Analysis Implicated Supervised Feedforward Neural Networks
The analysis and interpretation of enormous amounts of data generated by 5G networks present several challenges related to noise, precision, and feasibility validation. Therefore, this study aims to evaluate the effectiveness of channel equalisation in the network and enhance it by distributing signals over all subcarriers and symbols. The error-free signal received ensures the reliable transmission of signals in the network connection. These simulations were undertaken to fulfil the needs of and adapt the transmission properties according to the specific conditions of the channel. The dataset consists of artificially generated radio waves to train signals through neural networks (NNs) and machine learning algorithms to detect errors properly. The primary objective is to achieve optimal signal performance. In this regard, an artificial neural network (ANN) was initially employed, explicitly utilising the back-propagation technique and a feedforward multilayer perceptron (MLP). In addition, the signals were subjected to train using a real-time simulator, employing feedforward neural network and support vector machine (SVM) to validate the proposed methodology. Feedforward MLP achieved the highest performance in simulations compared to SVM. The scheme is promising to achieve optimal signal performance in real-time.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf