Poly Rose, Jeevan Kumar Pallagani, Seshu Bai Vummethala, Rajasekharan T
{"title":"通过浆液渗入聚氨酯泡沫制造的多孔氧化镁稳定氧化锆陶瓷的性能","authors":"Poly Rose, Jeevan Kumar Pallagani, Seshu Bai Vummethala, Rajasekharan T","doi":"10.1111/ijac.14831","DOIUrl":null,"url":null,"abstract":"<p>This paper brings out an innovation in fabricating porous magnesia-stabilized zirconia components by infiltrating free-flowing suspension into polyurethane foam. The process enables the production of samples with different levels of porosity and pore structure by easily controlling the amount of slurry infiltrated into the foam. The process uses Isobam, a nontoxic binder, which makes the fabrication simple and environment-friendly. Samples with five different levels of total porosity ranging from 41.7% to 62.4% were fabricated. Microstructural studies revealed multimodal pore structure comprising both open and closed porosities. Measurements on thermal properties and compressive strength of the samples showed that the sample with the lowest porosity exhibited a thermal conductivity of 0.495 W/mK and a compressive strength of 45.7 MPa. The measured values of thermal conductivity of the samples with different porosity levels could be described by modified effective medium theory. Present work opens up enormous possibilities for economical industrial production of porous magnesia-stabilized zirconia components for biomedical and thermal insulation applications.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4063-4072"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of porous magnesia-stabilized zirconia ceramics fabricated by slurry infiltration into polyurethane foam\",\"authors\":\"Poly Rose, Jeevan Kumar Pallagani, Seshu Bai Vummethala, Rajasekharan T\",\"doi\":\"10.1111/ijac.14831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper brings out an innovation in fabricating porous magnesia-stabilized zirconia components by infiltrating free-flowing suspension into polyurethane foam. The process enables the production of samples with different levels of porosity and pore structure by easily controlling the amount of slurry infiltrated into the foam. The process uses Isobam, a nontoxic binder, which makes the fabrication simple and environment-friendly. Samples with five different levels of total porosity ranging from 41.7% to 62.4% were fabricated. Microstructural studies revealed multimodal pore structure comprising both open and closed porosities. Measurements on thermal properties and compressive strength of the samples showed that the sample with the lowest porosity exhibited a thermal conductivity of 0.495 W/mK and a compressive strength of 45.7 MPa. The measured values of thermal conductivity of the samples with different porosity levels could be described by modified effective medium theory. Present work opens up enormous possibilities for economical industrial production of porous magnesia-stabilized zirconia components for biomedical and thermal insulation applications.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"21 6\",\"pages\":\"4063-4072\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14831\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14831","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Properties of porous magnesia-stabilized zirconia ceramics fabricated by slurry infiltration into polyurethane foam
This paper brings out an innovation in fabricating porous magnesia-stabilized zirconia components by infiltrating free-flowing suspension into polyurethane foam. The process enables the production of samples with different levels of porosity and pore structure by easily controlling the amount of slurry infiltrated into the foam. The process uses Isobam, a nontoxic binder, which makes the fabrication simple and environment-friendly. Samples with five different levels of total porosity ranging from 41.7% to 62.4% were fabricated. Microstructural studies revealed multimodal pore structure comprising both open and closed porosities. Measurements on thermal properties and compressive strength of the samples showed that the sample with the lowest porosity exhibited a thermal conductivity of 0.495 W/mK and a compressive strength of 45.7 MPa. The measured values of thermal conductivity of the samples with different porosity levels could be described by modified effective medium theory. Present work opens up enormous possibilities for economical industrial production of porous magnesia-stabilized zirconia components for biomedical and thermal insulation applications.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;