磁熵对掺铁的 Fe2VAl 全赫斯勒合金热电性能的影响

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-10-11 DOI:10.1016/j.mtphys.2024.101568
Tarachand , N. Tsujii , F. Garmroudi , E. Bauer , T. Mori
{"title":"磁熵对掺铁的 Fe2VAl 全赫斯勒合金热电性能的影响","authors":"Tarachand ,&nbsp;N. Tsujii ,&nbsp;F. Garmroudi ,&nbsp;E. Bauer ,&nbsp;T. Mori","doi":"10.1016/j.mtphys.2024.101568","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of spin entropy on the transport of heat/charge carriers in the Fe-doped full-Heusler alloy Fe<sub>2+<em>x</em></sub>VAl<sub>1-<em>x</em></sub> with <em>x</em> = 0–0.1 has been studied through low-temperature magnetic and thermoelectric measurements. Magnetization (<em>M</em>) measurements confirm itinerant-electron weak-ferromagnetic behavior. A systematic increase of the magnetic transition temperature <em>T</em><sub>C</sub> (from 40 K to 223 K) and of the saturation magnetization (from 0.13 to 0.41μ<sub>B</sub>/Fe) with increasing Fe doping (from <em>x</em> = 0 to 0.1) is observed. Applying a magnetic field causes significant suppression of the Seebeck coefficient (<em>S</em>) and the entropy term (<em>S/T</em>) with a negative magnetoresistance near <em>T</em><sub>C</sub> for all weak-ferromagnetic samples, demonstrating a clear effect of spin fluctuations. Analyzing <em>M</em>(<em>T</em>) and <em>S(T)</em>, we rule out sizeable magnon drag contributions. A large spin fluctuations-induced enhancement in the thermoelectric power factor <em>PF</em> of about 18 % is achieved for <em>x</em> = 0.1 near <em>T</em><sub>C</sub> when compared to measurements in a magnetic field of 7 T. The actual improvement in <em>PF</em> is even much higher, as the <em>S</em> shows a significant enhancement (about 34 %) compared to the estimated diffusion term of <em>S</em>(<em>T</em>) at <em>T</em><sub>C</sub>. The number of point defects also increases with Fe doping, causing a significant reduction of the lattice thermal conductivity. This study demonstrates the role of spin fluctuations in enhancing the thermopower/thermoelectric performance of Fe-doped Fe<sub>2</sub>VAl and opens a vista for the strategy's applicability for various thermoelectric materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101568"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of magnetic entropy in the thermoelectric properties of Fe-doped Fe2VAl full-Heusler alloy\",\"authors\":\"Tarachand ,&nbsp;N. Tsujii ,&nbsp;F. Garmroudi ,&nbsp;E. Bauer ,&nbsp;T. Mori\",\"doi\":\"10.1016/j.mtphys.2024.101568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of spin entropy on the transport of heat/charge carriers in the Fe-doped full-Heusler alloy Fe<sub>2+<em>x</em></sub>VAl<sub>1-<em>x</em></sub> with <em>x</em> = 0–0.1 has been studied through low-temperature magnetic and thermoelectric measurements. Magnetization (<em>M</em>) measurements confirm itinerant-electron weak-ferromagnetic behavior. A systematic increase of the magnetic transition temperature <em>T</em><sub>C</sub> (from 40 K to 223 K) and of the saturation magnetization (from 0.13 to 0.41μ<sub>B</sub>/Fe) with increasing Fe doping (from <em>x</em> = 0 to 0.1) is observed. Applying a magnetic field causes significant suppression of the Seebeck coefficient (<em>S</em>) and the entropy term (<em>S/T</em>) with a negative magnetoresistance near <em>T</em><sub>C</sub> for all weak-ferromagnetic samples, demonstrating a clear effect of spin fluctuations. Analyzing <em>M</em>(<em>T</em>) and <em>S(T)</em>, we rule out sizeable magnon drag contributions. A large spin fluctuations-induced enhancement in the thermoelectric power factor <em>PF</em> of about 18 % is achieved for <em>x</em> = 0.1 near <em>T</em><sub>C</sub> when compared to measurements in a magnetic field of 7 T. The actual improvement in <em>PF</em> is even much higher, as the <em>S</em> shows a significant enhancement (about 34 %) compared to the estimated diffusion term of <em>S</em>(<em>T</em>) at <em>T</em><sub>C</sub>. The number of point defects also increases with Fe doping, causing a significant reduction of the lattice thermal conductivity. This study demonstrates the role of spin fluctuations in enhancing the thermopower/thermoelectric performance of Fe-doped Fe<sub>2</sub>VAl and opens a vista for the strategy's applicability for various thermoelectric materials.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"48 \",\"pages\":\"Article 101568\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S254252932400244X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254252932400244X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过低温磁性和热电测量,研究了自旋熵对 x = 0 - 0.1 的掺铁全赫斯勒合金 Fe2+xVAl1-x 中热/电荷载流子传输的影响。磁化(M)测量证实了巡回电子弱铁磁行为。随着铁掺杂量的增加(从 x = 0 到 0.1),磁转变温度 TC(从 40 K 到 223 K)和饱和磁化率(从 0.13 到 0.41μB/Fe)出现了系统性增长。对于所有弱铁磁性样品,施加磁场会显著抑制塞贝克系数(S)和熵项(S/T),并在 TC 附近产生负磁阻,这表明自旋波动具有明显的影响。通过分析 M(T) 和 S(T),我们排除了可观的磁子阻力贡献。与 7 T 磁场中的测量结果相比,x = 0.1 时 TC 附近的热电功率因数 PF 在自旋波动的诱导下大幅提高了约 18%。由于 S 在 TC 时比估计的 S(T) 扩散项有显著提高(约 34%),PF 的实际提高幅度甚至更大。点缺陷的数量也随着铁的掺杂而增加,导致晶格热导率显著降低。这项研究证明了自旋波动在提高掺铁 Fe2VAl 的热功率/热电性能中的作用,并为该策略在各种热电材料中的应用开辟了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of magnetic entropy in the thermoelectric properties of Fe-doped Fe2VAl full-Heusler alloy
The effect of spin entropy on the transport of heat/charge carriers in the Fe-doped full-Heusler alloy Fe2+xVAl1-x with x = 0–0.1 has been studied through low-temperature magnetic and thermoelectric measurements. Magnetization (M) measurements confirm itinerant-electron weak-ferromagnetic behavior. A systematic increase of the magnetic transition temperature TC (from 40 K to 223 K) and of the saturation magnetization (from 0.13 to 0.41μB/Fe) with increasing Fe doping (from x = 0 to 0.1) is observed. Applying a magnetic field causes significant suppression of the Seebeck coefficient (S) and the entropy term (S/T) with a negative magnetoresistance near TC for all weak-ferromagnetic samples, demonstrating a clear effect of spin fluctuations. Analyzing M(T) and S(T), we rule out sizeable magnon drag contributions. A large spin fluctuations-induced enhancement in the thermoelectric power factor PF of about 18 % is achieved for x = 0.1 near TC when compared to measurements in a magnetic field of 7 T. The actual improvement in PF is even much higher, as the S shows a significant enhancement (about 34 %) compared to the estimated diffusion term of S(T) at TC. The number of point defects also increases with Fe doping, causing a significant reduction of the lattice thermal conductivity. This study demonstrates the role of spin fluctuations in enhancing the thermopower/thermoelectric performance of Fe-doped Fe2VAl and opens a vista for the strategy's applicability for various thermoelectric materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Mist CVD Technology for Gallium Oxide Deposition: A Review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon Achieving ultra-high resistivity and outstanding piezoelectric properties by co-substitution in CaBi2Nb2O9 ceramics Data-driven design of thermal-mechanical multifunctional metamaterials Construction of bifunctional MOF-based composite electrocatalysts promoting oxygen evolution reaction and glucose oxidation reaction and its kinetic deciphering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1