Xueyu Guan, Yan Zhang, Hongbo Niu, Peng Shi, Manhong Cao, Pengju Zu, Duoxun Xu, Qianzhuo Zhao, Bo Wang, Lingzhou Cui, José A. Gómez
{"title":"中国黄土高原三个林分的土壤呼吸作用和可吸入碳来源的季节性变化","authors":"Xueyu Guan, Yan Zhang, Hongbo Niu, Peng Shi, Manhong Cao, Pengju Zu, Duoxun Xu, Qianzhuo Zhao, Bo Wang, Lingzhou Cui, José A. Gómez","doi":"10.1002/ldr.5325","DOIUrl":null,"url":null,"abstract":"The litter and root systems of forest stands can influence soil organic matter content and are subject to the effects of soil temperature and moisture. Through the decomposition activity of soil microorganisms, a portion of the carbon stored in aboveground vegetation is transferred to the underground carbon pool, thereby impacting soil respiration. When we investigated the effects of various components and environmental factors on soil respiration, <sup>13</sup>C served as an effective tool for analyzing their contributions. In this study, conducted in a region of the Loess Plateau, three forest stands' soil respiration (<i>Quercus acutissima</i> forest—QAF, <i>Pinus tabuliformis</i> forest—PTF, and mixed forests—MF) was examined. Both soil respiration rate (Rs) and <sup>13</sup>C exhibited seasonal fluctuations linked to changes in surface soil temperature and moisture. The soil respiration rate of all forest stands decreased to below 1 μmol m<sup>−2</sup> s<sup>−1</sup> during winter. The average range of δ<sup>13</sup>C fell between −22‰ and −17‰. Over the course of four seasons, we monitored soil respiration and identified hydrothermal factors. The correlation between hydrothermal factors and CO<sub>2</sub> releases from soil respiration varied significantly across seasons among different forest structures (<i>p</i> < 0.001). Additionally, the contribution of litter to soil respiration was the main source and it was higher in autumn and winter, with a maximum of over 75%. This study holds significant importance for understanding the processes underlying the carbon sources of soil respiration.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal Evolution of Soil Respiration and Sources of Respirable Carbon in Three Forest Stands on the Loess Plateau of China\",\"authors\":\"Xueyu Guan, Yan Zhang, Hongbo Niu, Peng Shi, Manhong Cao, Pengju Zu, Duoxun Xu, Qianzhuo Zhao, Bo Wang, Lingzhou Cui, José A. Gómez\",\"doi\":\"10.1002/ldr.5325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The litter and root systems of forest stands can influence soil organic matter content and are subject to the effects of soil temperature and moisture. Through the decomposition activity of soil microorganisms, a portion of the carbon stored in aboveground vegetation is transferred to the underground carbon pool, thereby impacting soil respiration. When we investigated the effects of various components and environmental factors on soil respiration, <sup>13</sup>C served as an effective tool for analyzing their contributions. In this study, conducted in a region of the Loess Plateau, three forest stands' soil respiration (<i>Quercus acutissima</i> forest—QAF, <i>Pinus tabuliformis</i> forest—PTF, and mixed forests—MF) was examined. Both soil respiration rate (Rs) and <sup>13</sup>C exhibited seasonal fluctuations linked to changes in surface soil temperature and moisture. The soil respiration rate of all forest stands decreased to below 1 μmol m<sup>−2</sup> s<sup>−1</sup> during winter. The average range of δ<sup>13</sup>C fell between −22‰ and −17‰. Over the course of four seasons, we monitored soil respiration and identified hydrothermal factors. The correlation between hydrothermal factors and CO<sub>2</sub> releases from soil respiration varied significantly across seasons among different forest structures (<i>p</i> < 0.001). Additionally, the contribution of litter to soil respiration was the main source and it was higher in autumn and winter, with a maximum of over 75%. This study holds significant importance for understanding the processes underlying the carbon sources of soil respiration.\",\"PeriodicalId\":203,\"journal\":{\"name\":\"Land Degradation & Development\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Degradation & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/ldr.5325\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5325","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Seasonal Evolution of Soil Respiration and Sources of Respirable Carbon in Three Forest Stands on the Loess Plateau of China
The litter and root systems of forest stands can influence soil organic matter content and are subject to the effects of soil temperature and moisture. Through the decomposition activity of soil microorganisms, a portion of the carbon stored in aboveground vegetation is transferred to the underground carbon pool, thereby impacting soil respiration. When we investigated the effects of various components and environmental factors on soil respiration, 13C served as an effective tool for analyzing their contributions. In this study, conducted in a region of the Loess Plateau, three forest stands' soil respiration (Quercus acutissima forest—QAF, Pinus tabuliformis forest—PTF, and mixed forests—MF) was examined. Both soil respiration rate (Rs) and 13C exhibited seasonal fluctuations linked to changes in surface soil temperature and moisture. The soil respiration rate of all forest stands decreased to below 1 μmol m−2 s−1 during winter. The average range of δ13C fell between −22‰ and −17‰. Over the course of four seasons, we monitored soil respiration and identified hydrothermal factors. The correlation between hydrothermal factors and CO2 releases from soil respiration varied significantly across seasons among different forest structures (p < 0.001). Additionally, the contribution of litter to soil respiration was the main source and it was higher in autumn and winter, with a maximum of over 75%. This study holds significant importance for understanding the processes underlying the carbon sources of soil respiration.
期刊介绍:
Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on:
- what land degradation is;
- what causes land degradation;
- the impacts of land degradation
- the scale of land degradation;
- the history, current status or future trends of land degradation;
- avoidance, mitigation and control of land degradation;
- remedial actions to rehabilitate or restore degraded land;
- sustainable land management.