谷类作物的根系结构和盐胁迫反应

IF 3.7 2区 农林科学 Q1 AGRONOMY Journal of Agronomy and Crop Science Pub Date : 2024-10-10 DOI:10.1111/jac.12776
Muhammad Farooq, Suphia Rafique, Noreen Zahra, Abdul Rehman, Kadambot H. M. Siddique
{"title":"谷类作物的根系结构和盐胁迫反应","authors":"Muhammad Farooq,&nbsp;Suphia Rafique,&nbsp;Noreen Zahra,&nbsp;Abdul Rehman,&nbsp;Kadambot H. M. Siddique","doi":"10.1111/jac.12776","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cereal crops are cultivated across diverse regions globally, facing numerous environmental challenges, with salinity posing a significant threat to their growth and productivity. Plants respond to salinity stress (SS) through various morphological and physiological mechanisms. Notably, root system architecture (RSA) has emerged as a crucial factor in aiding nutrient uptake and ensuring efficient water supply, reshaping plant responses, particularly under SS. However, assessing and visualizing RSA and growth patterns in different crops is more challenging than aboveground parts, often leading to neglect in research. Roots serve a dual role in SS: preventing Na<sup>+</sup> (sodium) uptake from soil and its accumulation into shoots. This review highlights the impact of SS on remodeling RSA, encompassing phenology, cytology, and genetic regulation. It offers comprehensive insights into root architecture, functionalities, hormonal crosstalk, and agronomic strategies tailored for cereals crops. These insights aim to optimize resource capture, mitigate Na<sup>+</sup> uptake—known to reduce yield in saline conditions—and explore potential avenues for engineering roots to circumvent SS.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root System Architecture and Salt Stress Responses in Cereal Crops\",\"authors\":\"Muhammad Farooq,&nbsp;Suphia Rafique,&nbsp;Noreen Zahra,&nbsp;Abdul Rehman,&nbsp;Kadambot H. M. Siddique\",\"doi\":\"10.1111/jac.12776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cereal crops are cultivated across diverse regions globally, facing numerous environmental challenges, with salinity posing a significant threat to their growth and productivity. Plants respond to salinity stress (SS) through various morphological and physiological mechanisms. Notably, root system architecture (RSA) has emerged as a crucial factor in aiding nutrient uptake and ensuring efficient water supply, reshaping plant responses, particularly under SS. However, assessing and visualizing RSA and growth patterns in different crops is more challenging than aboveground parts, often leading to neglect in research. Roots serve a dual role in SS: preventing Na<sup>+</sup> (sodium) uptake from soil and its accumulation into shoots. This review highlights the impact of SS on remodeling RSA, encompassing phenology, cytology, and genetic regulation. It offers comprehensive insights into root architecture, functionalities, hormonal crosstalk, and agronomic strategies tailored for cereals crops. These insights aim to optimize resource capture, mitigate Na<sup>+</sup> uptake—known to reduce yield in saline conditions—and explore potential avenues for engineering roots to circumvent SS.</p>\\n </div>\",\"PeriodicalId\":14864,\"journal\":{\"name\":\"Journal of Agronomy and Crop Science\",\"volume\":\"210 6\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agronomy and Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jac.12776\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12776","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

谷类作物在全球不同地区种植,面临着众多环境挑战,其中盐分对其生长和产量构成了重大威胁。植物通过各种形态和生理机制对盐分胁迫(SS)做出反应。值得注意的是,根系结构(RSA)已成为帮助养分吸收和确保有效供水的关键因素,重塑了植物的反应,尤其是在盐碱胁迫下。然而,与地上部分相比,对不同作物的根系结构和生长模式进行评估和可视化更具挑战性,这往往导致研究工作被忽视。根系在 SS 中发挥着双重作用:防止 Na+(钠)从土壤中吸收并积累到芽中。这篇综述强调了 SS 对重塑 RSA 的影响,包括物候学、细胞学和遗传调控。它提供了对根系结构、功能、激素串扰以及针对谷类作物的农艺策略的全面见解。这些见解旨在优化资源捕获、减轻 Na+ 吸收(众所周知,Na+ 吸收会降低盐碱条件下的产量)以及探索根系工程的潜在途径,以规避 SS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Root System Architecture and Salt Stress Responses in Cereal Crops

Cereal crops are cultivated across diverse regions globally, facing numerous environmental challenges, with salinity posing a significant threat to their growth and productivity. Plants respond to salinity stress (SS) through various morphological and physiological mechanisms. Notably, root system architecture (RSA) has emerged as a crucial factor in aiding nutrient uptake and ensuring efficient water supply, reshaping plant responses, particularly under SS. However, assessing and visualizing RSA and growth patterns in different crops is more challenging than aboveground parts, often leading to neglect in research. Roots serve a dual role in SS: preventing Na+ (sodium) uptake from soil and its accumulation into shoots. This review highlights the impact of SS on remodeling RSA, encompassing phenology, cytology, and genetic regulation. It offers comprehensive insights into root architecture, functionalities, hormonal crosstalk, and agronomic strategies tailored for cereals crops. These insights aim to optimize resource capture, mitigate Na+ uptake—known to reduce yield in saline conditions—and explore potential avenues for engineering roots to circumvent SS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agronomy and Crop Science
Journal of Agronomy and Crop Science 农林科学-农艺学
CiteScore
8.20
自引率
5.70%
发文量
54
审稿时长
7.8 months
期刊介绍: The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.
期刊最新文献
Assessing Salinity, Drought and High Temperature Stress in Maize (Zea mays L.) and Wheat (Triticum aestivum L.) Varieties: Theoretical Combination as Multifactorial Stress Evaluating Drought Tolerance and Yield Stability of Sorghum Genotypes for Sustainable Agriculture in Sohag, Egypt Dry Spell Dynamics Impacting the Productivity of Rainfed Crops Over the Semi-Arid Regions of South-East India Effect of Shading on Leaf Anatomical Structure, Photosynthesis Characteristics and Chlorophyll Fluorescence of Soybean (Glycine max) Comparative Analysis of Phytochemicals and Gene Expression in Soybean (Glycine max) Under Acute Moderated and Severe Elevated Ozone: Unravelling the Role of Antioxidant Defence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1