揭示采用 Na3.5V1.5Mn0.5(PO4)3 聚阴离子阴极的钠离子袋式电池的电解质适用性优化和失效机理

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-10-11 DOI:10.1016/j.ensm.2024.103830
Xin Tang, Enmin Li, Zhi Zhou, Kaibo Zhang, Jinhan Teng, Tianming Lu, Binghan Dai, Dongdong Yin, Weifeng Deng, Hao Li, Xing Wang, Jing Li
{"title":"揭示采用 Na3.5V1.5Mn0.5(PO4)3 聚阴离子阴极的钠离子袋式电池的电解质适用性优化和失效机理","authors":"Xin Tang, Enmin Li, Zhi Zhou, Kaibo Zhang, Jinhan Teng, Tianming Lu, Binghan Dai, Dongdong Yin, Weifeng Deng, Hao Li, Xing Wang, Jing Li","doi":"10.1016/j.ensm.2024.103830","DOIUrl":null,"url":null,"abstract":"Polyanionic cathodes are promising for sodium-ion batteries (SIBs) in large-scale energy storage applications, but there is almost no research on the failure mechanisms of SIBs with polyanionic cathodes. Herein, we investigate the failure mechanisms of the pouch cells with the Na<sub>3.5</sub>V<sub>1.5</sub>Mn<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (NVMP) polyanionic cathode and hard carbon (HC) anode. Firstly, the sodium salts are studied in same electrolyte solvents by combining theoretical calculation and electrochemical tests, and NaClO<sub>4</sub> is verified as suitable for NVMP<strong>//</strong>Na half-cells, while NaPF<sub>6</sub> is optimal for the cells containing HC electrode. Secondly, the charging cut-off voltages significantly affect the cycling performance. For the NVMP pouch cells cycled within 1.5 ∼ 4.2 V, slight electrolyte oxidation occurs during the final stage of each charge cycle, leading to macroscopic “swelling” after 500 cycles. Finally, for the NVMP pouch cells cycled more than 3000 cycles within 1.5 ∼ 4.0 V, the main failure mechanism is the “sodium deficiency” and the irreversible deactivation of manganese ions in the waste NVMP cathode, rather than the oxidation of the spent separator or the “sodium precipitation” on the spent HC anode. This work addresses critical gaps in failure mechanism research and lays a foundation for the large-scale application of SIBs with polyanionic cathodes.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the electrolyte suitability optimization and failure mechanism of sodium-ion pouch cells with Na3.5V1.5Mn0.5(PO4)3 polyanionic cathode\",\"authors\":\"Xin Tang, Enmin Li, Zhi Zhou, Kaibo Zhang, Jinhan Teng, Tianming Lu, Binghan Dai, Dongdong Yin, Weifeng Deng, Hao Li, Xing Wang, Jing Li\",\"doi\":\"10.1016/j.ensm.2024.103830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyanionic cathodes are promising for sodium-ion batteries (SIBs) in large-scale energy storage applications, but there is almost no research on the failure mechanisms of SIBs with polyanionic cathodes. Herein, we investigate the failure mechanisms of the pouch cells with the Na<sub>3.5</sub>V<sub>1.5</sub>Mn<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (NVMP) polyanionic cathode and hard carbon (HC) anode. Firstly, the sodium salts are studied in same electrolyte solvents by combining theoretical calculation and electrochemical tests, and NaClO<sub>4</sub> is verified as suitable for NVMP<strong>//</strong>Na half-cells, while NaPF<sub>6</sub> is optimal for the cells containing HC electrode. Secondly, the charging cut-off voltages significantly affect the cycling performance. For the NVMP pouch cells cycled within 1.5 ∼ 4.2 V, slight electrolyte oxidation occurs during the final stage of each charge cycle, leading to macroscopic “swelling” after 500 cycles. Finally, for the NVMP pouch cells cycled more than 3000 cycles within 1.5 ∼ 4.0 V, the main failure mechanism is the “sodium deficiency” and the irreversible deactivation of manganese ions in the waste NVMP cathode, rather than the oxidation of the spent separator or the “sodium precipitation” on the spent HC anode. This work addresses critical gaps in failure mechanism research and lays a foundation for the large-scale application of SIBs with polyanionic cathodes.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103830\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103830","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚阴离子阴极在钠离子电池(SIB)的大规模储能应用中大有可为,但目前几乎还没有关于采用聚阴离子阴极的钠离子电池失效机理的研究。在此,我们研究了采用 Na3.5V1.5Mn0.5(PO4)3 (NVMP) 聚阴离子阴极和硬碳(HC)阳极的袋式电池的失效机理。首先,通过理论计算和电化学测试相结合的方法,对相同电解质溶剂中的钠盐进行了研究,验证了 NaClO4 适用于 NVMP//Na 半电池,而 NaPF6 则是含有 HC 电极的电池的最佳选择。其次,充电截止电压对循环性能有很大影响。对于在 1.5 ∼ 4.2 V 范围内循环的 NVMP 袋式电池,在每个充电循环的最后阶段会发生轻微的电解质氧化,导致 500 个循环后出现宏观 "膨胀"。最后,对于在 1.5 ∼ 4.0 V 内循环超过 3000 次的 NVMP 袋式电池,主要失效机制是 "缺钠 "和废 NVMP 阴极中锰离子的不可逆失活,而不是废隔膜的氧化或废 HC 阳极上的 "钠沉淀"。这项研究填补了失效机理研究方面的重要空白,为大规模应用具有多阴离子阴极的 SIBs 奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing the electrolyte suitability optimization and failure mechanism of sodium-ion pouch cells with Na3.5V1.5Mn0.5(PO4)3 polyanionic cathode
Polyanionic cathodes are promising for sodium-ion batteries (SIBs) in large-scale energy storage applications, but there is almost no research on the failure mechanisms of SIBs with polyanionic cathodes. Herein, we investigate the failure mechanisms of the pouch cells with the Na3.5V1.5Mn0.5(PO4)3 (NVMP) polyanionic cathode and hard carbon (HC) anode. Firstly, the sodium salts are studied in same electrolyte solvents by combining theoretical calculation and electrochemical tests, and NaClO4 is verified as suitable for NVMP//Na half-cells, while NaPF6 is optimal for the cells containing HC electrode. Secondly, the charging cut-off voltages significantly affect the cycling performance. For the NVMP pouch cells cycled within 1.5 ∼ 4.2 V, slight electrolyte oxidation occurs during the final stage of each charge cycle, leading to macroscopic “swelling” after 500 cycles. Finally, for the NVMP pouch cells cycled more than 3000 cycles within 1.5 ∼ 4.0 V, the main failure mechanism is the “sodium deficiency” and the irreversible deactivation of manganese ions in the waste NVMP cathode, rather than the oxidation of the spent separator or the “sodium precipitation” on the spent HC anode. This work addresses critical gaps in failure mechanism research and lays a foundation for the large-scale application of SIBs with polyanionic cathodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Revealing the electrolyte suitability optimization and failure mechanism of sodium-ion pouch cells with Na3.5V1.5Mn0.5(PO4)3 polyanionic cathode Meta-substituted thienoviologen with enhanced radical stability via π-π interaction modulation for neutral aqueous organic flow batteries Enhanced Carbon Host with N-reinforced S-sites to Catalyze Rapid Iodine Conversion Kinetics for Zn-I2 Battery Quantitative pre-intercalation of alkali metal ions enables precisely modulating Li+ storage of Mxenes Next-Generation Cathodes for Calcium-Ion Batteries: Leveraging NASICON Structures for Enhanced Stability and Energy Density
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1