Chunqiu Zhang, Ning Rong, Ziyi Lin, Peng-Qi Li, Jingyao Shi, Wei Zhou, Lili Niu, Fei Li, Rongxin Tang, Lei Li and Long Meng
{"title":"体外受精精子的声学富集","authors":"Chunqiu Zhang, Ning Rong, Ziyi Lin, Peng-Qi Li, Jingyao Shi, Wei Zhou, Lili Niu, Fei Li, Rongxin Tang, Lei Li and Long Meng","doi":"10.1039/D4LC00604F","DOIUrl":null,"url":null,"abstract":"<p >Assisted reproductive technology (ART) has emerged as a crucial method in modern medicine for tackling infertility. However, the success of fertilization depends on the quality and quantity of sperm, often necessitating invasive surgical intervention, which presents challenges for non-invasive <em>in vitro</em> fertilization. Acoustic microfluidics technology has found widespread application across various biological contexts. In this paper, we propose to introduce a novel approach using asymmetric acoustic streaming generated by a single interdigital transducer (IDT) to enhance sperm concentration and improve fertilization <em>in vitro</em>, particularly in cases of moderate oligozoospermia. The concentration of particles increased approximately 6-fold in the central region after acoustic enrichment. Moreover, sperm motility was significantly improved without additional DNA fragmentation, and all the oocytes remained viable after 5 min of acoustic enrichment. Notably, acoustic enrichment accelerated fertilization and embryo development, leading to a higher fertilization rate and faster cleavage speed. Specifically, within 36 hours, the multiple-cell embryo ratio was significantly increased compared to the control group. This finding further validates the feasibility and non-invasiveness of acoustic enrichment for sperm fertilization <em>in vitro</em>. This work provides a promising tool for <em>in vitro</em> fertilization, holding significant implications for assisted reproduction.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 22","pages":" 5113-5123"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00604f?page=search","citationCount":"0","resultStr":"{\"title\":\"Acoustic enrichment of sperm for in vitro fertilization†\",\"authors\":\"Chunqiu Zhang, Ning Rong, Ziyi Lin, Peng-Qi Li, Jingyao Shi, Wei Zhou, Lili Niu, Fei Li, Rongxin Tang, Lei Li and Long Meng\",\"doi\":\"10.1039/D4LC00604F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Assisted reproductive technology (ART) has emerged as a crucial method in modern medicine for tackling infertility. However, the success of fertilization depends on the quality and quantity of sperm, often necessitating invasive surgical intervention, which presents challenges for non-invasive <em>in vitro</em> fertilization. Acoustic microfluidics technology has found widespread application across various biological contexts. In this paper, we propose to introduce a novel approach using asymmetric acoustic streaming generated by a single interdigital transducer (IDT) to enhance sperm concentration and improve fertilization <em>in vitro</em>, particularly in cases of moderate oligozoospermia. The concentration of particles increased approximately 6-fold in the central region after acoustic enrichment. Moreover, sperm motility was significantly improved without additional DNA fragmentation, and all the oocytes remained viable after 5 min of acoustic enrichment. Notably, acoustic enrichment accelerated fertilization and embryo development, leading to a higher fertilization rate and faster cleavage speed. Specifically, within 36 hours, the multiple-cell embryo ratio was significantly increased compared to the control group. This finding further validates the feasibility and non-invasiveness of acoustic enrichment for sperm fertilization <em>in vitro</em>. This work provides a promising tool for <em>in vitro</em> fertilization, holding significant implications for assisted reproduction.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 22\",\"pages\":\" 5113-5123\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00604f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00604f\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00604f","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
辅助生殖技术(ART)已成为现代医学解决不孕不育问题的重要方法。然而,受精成功与否取决于精子的质量和数量,通常需要进行侵入性手术干预,这给无创体外受精带来了挑战。声学微流控技术已在各种生物领域得到广泛应用。在本文中,我们提出了一种新方法,利用单个趾间换能器(IDT)产生的不对称声流来提高精子浓度,改善体外受精,尤其是在中度少精症的情况下。声波富集后,中央区域的颗粒浓度增加了约 6 倍。此外,精子的运动能力也得到了明显改善,而且不会造成额外的 DNA 断裂,所有卵母细胞在声学富集 5 分钟后仍能存活。值得注意的是,声学富集加速了受精和胚胎发育,使受精率更高,裂殖速度更快。具体来说,与对照组相比,36 小时内多细胞胚胎比率明显增加。这一发现进一步验证了声学富集技术在体外精子受精方面的可行性和非侵入性。这项工作为体外受精提供了一种前景广阔的工具,对辅助生殖具有重要意义。
Acoustic enrichment of sperm for in vitro fertilization†
Assisted reproductive technology (ART) has emerged as a crucial method in modern medicine for tackling infertility. However, the success of fertilization depends on the quality and quantity of sperm, often necessitating invasive surgical intervention, which presents challenges for non-invasive in vitro fertilization. Acoustic microfluidics technology has found widespread application across various biological contexts. In this paper, we propose to introduce a novel approach using asymmetric acoustic streaming generated by a single interdigital transducer (IDT) to enhance sperm concentration and improve fertilization in vitro, particularly in cases of moderate oligozoospermia. The concentration of particles increased approximately 6-fold in the central region after acoustic enrichment. Moreover, sperm motility was significantly improved without additional DNA fragmentation, and all the oocytes remained viable after 5 min of acoustic enrichment. Notably, acoustic enrichment accelerated fertilization and embryo development, leading to a higher fertilization rate and faster cleavage speed. Specifically, within 36 hours, the multiple-cell embryo ratio was significantly increased compared to the control group. This finding further validates the feasibility and non-invasiveness of acoustic enrichment for sperm fertilization in vitro. This work provides a promising tool for in vitro fertilization, holding significant implications for assisted reproduction.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.