铑合金β氧化镓材料:新型三元超宽带隙半导体

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-10-11 DOI:10.1002/aelm.202400547
Xian-Hu Zha, Yu-Xi Wan, Shuang Li, Dao Hua Zhang
{"title":"铑合金β氧化镓材料:新型三元超宽带隙半导体","authors":"Xian-Hu Zha, Yu-Xi Wan, Shuang Li, Dao Hua Zhang","doi":"10.1002/aelm.202400547","DOIUrl":null,"url":null,"abstract":"Beta gallium oxide (<i>β</i>-Ga<sub>2</sub>O<sub>3</sub>) is an ultra-wide-bandgap semiconductor with advantages for high-power electronics. However, the power resistance of <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>-based devices is still much lower than its material limit due to its flat band dispersion at its valence band maximum (VBM) and the difficulty for <i>p</i>-type doping. Here, <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>-based new type ternary ultra-wide bandgap semiconductors: <i>β</i>-(Rh<i><sub>x</sub></i>Ga<i><sub>1-x</sub></i>)<sub>2</sub>O<sub>3</sub>’s alloys are reported with <i>x</i> up to 0.5. The energy and band-dispersion curvature of <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>’s VBM are significantly enhanced via Rh-alloying. Compared to that in <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>, the <i>β</i>-(Rh<i><sub>x</sub></i>Ga<i><sub>1-x</sub></i>)<sub>2</sub>O<sub>3</sub>’s VBMs increase more than 1.35 <i>eV</i>. The hole mass of <i>β</i>-(Rh<sub>0.25</sub>Ga<sub>0.75</sub>)<sub>2</sub>O<sub>3</sub> is only 52.3% of that in <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>. The decreased hole mass is correlated with the equal Rh─O bond along the <i>b</i>-axis. Thanks to the simultaneous rise of conduction band minimums, the bandgaps of <i>β</i>-(Rh<i><sub>x</sub></i>Ga<i><sub>1-x</sub></i>)<sub>2</sub>O<sub>3</sub> are still much larger than that in commercial silicon carbide. Moreover, the alloys show direct bandgaps in a wide range of <i>x</i>, and a direct and ultra-wide bandgap of 4.10 <i>eV</i> is determined in <i>β</i>-(Rh<sub>0.3125</sub>Ga<sub>0.6875</sub>)<sub>2</sub>O<sub>3</sub>. Combined with the enhanced valence energy, reduced hole mass, and ultra-wide bandgap, the <i>β</i>-(Rh<i><sub>x</sub></i>Ga<i><sub>1-x</sub></i>)<sub>2</sub>O<sub>3</sub> can be candidate semiconductors for a new generation of power electronics, ultraviolet optoelectronics, and complementary metal-oxide-semiconductor (CMOS) technologies.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"24 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhodium-Alloyed Beta Gallium Oxide Materials: New Type Ternary Ultra-Wide Bandgap Semiconductors\",\"authors\":\"Xian-Hu Zha, Yu-Xi Wan, Shuang Li, Dao Hua Zhang\",\"doi\":\"10.1002/aelm.202400547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beta gallium oxide (<i>β</i>-Ga<sub>2</sub>O<sub>3</sub>) is an ultra-wide-bandgap semiconductor with advantages for high-power electronics. However, the power resistance of <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>-based devices is still much lower than its material limit due to its flat band dispersion at its valence band maximum (VBM) and the difficulty for <i>p</i>-type doping. Here, <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>-based new type ternary ultra-wide bandgap semiconductors: <i>β</i>-(Rh<i><sub>x</sub></i>Ga<i><sub>1-x</sub></i>)<sub>2</sub>O<sub>3</sub>’s alloys are reported with <i>x</i> up to 0.5. The energy and band-dispersion curvature of <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>’s VBM are significantly enhanced via Rh-alloying. Compared to that in <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>, the <i>β</i>-(Rh<i><sub>x</sub></i>Ga<i><sub>1-x</sub></i>)<sub>2</sub>O<sub>3</sub>’s VBMs increase more than 1.35 <i>eV</i>. The hole mass of <i>β</i>-(Rh<sub>0.25</sub>Ga<sub>0.75</sub>)<sub>2</sub>O<sub>3</sub> is only 52.3% of that in <i>β</i>-Ga<sub>2</sub>O<sub>3</sub>. The decreased hole mass is correlated with the equal Rh─O bond along the <i>b</i>-axis. Thanks to the simultaneous rise of conduction band minimums, the bandgaps of <i>β</i>-(Rh<i><sub>x</sub></i>Ga<i><sub>1-x</sub></i>)<sub>2</sub>O<sub>3</sub> are still much larger than that in commercial silicon carbide. Moreover, the alloys show direct bandgaps in a wide range of <i>x</i>, and a direct and ultra-wide bandgap of 4.10 <i>eV</i> is determined in <i>β</i>-(Rh<sub>0.3125</sub>Ga<sub>0.6875</sub>)<sub>2</sub>O<sub>3</sub>. Combined with the enhanced valence energy, reduced hole mass, and ultra-wide bandgap, the <i>β</i>-(Rh<i><sub>x</sub></i>Ga<i><sub>1-x</sub></i>)<sub>2</sub>O<sub>3</sub> can be candidate semiconductors for a new generation of power electronics, ultraviolet optoelectronics, and complementary metal-oxide-semiconductor (CMOS) technologies.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400547\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400547","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

β-氧化镓(β-Ga2O3)是一种超宽带隙半导体,具有大功率电子器件的优势。然而,由于β-Ga2O3 在价带最大值(VBM)处的平坦带色散以及难以进行 p 型掺杂,其器件的功率电阻仍远低于其材料极限。在此,我们将介绍基于 β-Ga2O3 的新型三元超宽带隙半导体:β-(RhxGa1-x)2O3合金。通过 Rh-合金化,β-Ga2O3 的 VBM 能量和带散曲率显著提高。与 β-Ga2O3 相比,β-(RhxGa1-x)2O3 的 VBM 增加了 1.35 eV 以上。β-(Rh0.25Ga0.75)2O3的空穴质量仅为β-Ga2O3的52.3%。空穴质量的减少与沿 b 轴的 Rh─O 键相等有关。由于导带最小值同时上升,β-(RhxGa1-x)2O3 的带隙仍然比商用碳化硅的带隙大得多。此外,这些合金在很宽的 x 范围内显示出直接带隙,在 β-(Rh0.3125Ga0.6875)2O3 中确定了 4.10 eV 的直接超宽带隙。结合增强的价能、降低的空穴质量和超宽带隙,β-(RhxGa1-x)2O3 可以成为新一代电力电子、紫外光电子和互补金属氧化物半导体(CMOS)技术的候选半导体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rhodium-Alloyed Beta Gallium Oxide Materials: New Type Ternary Ultra-Wide Bandgap Semiconductors
Beta gallium oxide (β-Ga2O3) is an ultra-wide-bandgap semiconductor with advantages for high-power electronics. However, the power resistance of β-Ga2O3-based devices is still much lower than its material limit due to its flat band dispersion at its valence band maximum (VBM) and the difficulty for p-type doping. Here, β-Ga2O3-based new type ternary ultra-wide bandgap semiconductors: β-(RhxGa1-x)2O3’s alloys are reported with x up to 0.5. The energy and band-dispersion curvature of β-Ga2O3’s VBM are significantly enhanced via Rh-alloying. Compared to that in β-Ga2O3, the β-(RhxGa1-x)2O3’s VBMs increase more than 1.35 eV. The hole mass of β-(Rh0.25Ga0.75)2O3 is only 52.3% of that in β-Ga2O3. The decreased hole mass is correlated with the equal Rh─O bond along the b-axis. Thanks to the simultaneous rise of conduction band minimums, the bandgaps of β-(RhxGa1-x)2O3 are still much larger than that in commercial silicon carbide. Moreover, the alloys show direct bandgaps in a wide range of x, and a direct and ultra-wide bandgap of 4.10 eV is determined in β-(Rh0.3125Ga0.6875)2O3. Combined with the enhanced valence energy, reduced hole mass, and ultra-wide bandgap, the β-(RhxGa1-x)2O3 can be candidate semiconductors for a new generation of power electronics, ultraviolet optoelectronics, and complementary metal-oxide-semiconductor (CMOS) technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Optimizing MoS2 Electrolyte-Gated Transistors: Stability, Performance, and Sensitivity Enhancements Memristive Materials, Devices, and Systems (MEMRISYS 2023) Magnetic Field Screening of 2D Materials Revealed by Magnetic Force Microscopy A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo Evolution of Dissipative Regimes in Atomically Thin Bi2Sr2CaCu2O8 + x Superconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1