Zhipeng Han, Yiyan Wang, Xiaofang Zang, Hong Liu, Jiqing Su, Yong Zhou
{"title":"作为多功能放射增敏剂的FePt/MnO2@PEG纳米颗粒可在骨肉瘤治疗中增强铁素体生成和缓解缺氧。","authors":"Zhipeng Han, Yiyan Wang, Xiaofang Zang, Hong Liu, Jiqing Su, Yong Zhou","doi":"10.1109/TNB.2024.3475051","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy (RT) is a widely used cancer treatment, and the use of metal-based nanoradiotherapy sensitizers has demonstrated promise in enhancing its efficacy. However, achieving effective accumulation of these sensitizers within tumors and overcoming resistance induced by the hypoxic tumor microenvironment remain challenging issues. In this study, we developed FePt/MnO<sub>2</sub>@PEG nanoparticles with multiple radiosensitizing mechanisms, including high-atomic-number element-mediated radiation capture, catalase-mimicking oxygenation, and GSH depletion-induced ferroptosis. Both in vitro and in vivo experiments were conducted to validate the radiosensitizing mechanisms and therapeutic efficacy of FePt/MnO<sub>2</sub>@PEG. In conclusion, this study presents a novel and clinically relevant strategy and establishes a safe and effective combination radiotherapy approach for cancer treatment. These findings hold significant potential for improving radiotherapy outcomes and advancing the field of nanomedicine in cancer therapy.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FePt/MnO<sub>2</sub>@PEG Nanoparticles as Multifunctional Radiosensitizers for Enhancing Ferroptosis and Alleviating Hypoxia in Osteosarcoma Therapy.\",\"authors\":\"Zhipeng Han, Yiyan Wang, Xiaofang Zang, Hong Liu, Jiqing Su, Yong Zhou\",\"doi\":\"10.1109/TNB.2024.3475051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiotherapy (RT) is a widely used cancer treatment, and the use of metal-based nanoradiotherapy sensitizers has demonstrated promise in enhancing its efficacy. However, achieving effective accumulation of these sensitizers within tumors and overcoming resistance induced by the hypoxic tumor microenvironment remain challenging issues. In this study, we developed FePt/MnO<sub>2</sub>@PEG nanoparticles with multiple radiosensitizing mechanisms, including high-atomic-number element-mediated radiation capture, catalase-mimicking oxygenation, and GSH depletion-induced ferroptosis. Both in vitro and in vivo experiments were conducted to validate the radiosensitizing mechanisms and therapeutic efficacy of FePt/MnO<sub>2</sub>@PEG. In conclusion, this study presents a novel and clinically relevant strategy and establishes a safe and effective combination radiotherapy approach for cancer treatment. These findings hold significant potential for improving radiotherapy outcomes and advancing the field of nanomedicine in cancer therapy.</p>\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1109/TNB.2024.3475051\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2024.3475051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
FePt/MnO2@PEG Nanoparticles as Multifunctional Radiosensitizers for Enhancing Ferroptosis and Alleviating Hypoxia in Osteosarcoma Therapy.
Radiotherapy (RT) is a widely used cancer treatment, and the use of metal-based nanoradiotherapy sensitizers has demonstrated promise in enhancing its efficacy. However, achieving effective accumulation of these sensitizers within tumors and overcoming resistance induced by the hypoxic tumor microenvironment remain challenging issues. In this study, we developed FePt/MnO2@PEG nanoparticles with multiple radiosensitizing mechanisms, including high-atomic-number element-mediated radiation capture, catalase-mimicking oxygenation, and GSH depletion-induced ferroptosis. Both in vitro and in vivo experiments were conducted to validate the radiosensitizing mechanisms and therapeutic efficacy of FePt/MnO2@PEG. In conclusion, this study presents a novel and clinically relevant strategy and establishes a safe and effective combination radiotherapy approach for cancer treatment. These findings hold significant potential for improving radiotherapy outcomes and advancing the field of nanomedicine in cancer therapy.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).