John Oladeji Oladokun, Isaias Hernandez, Aryed N Perez-Baez, Olufemi Joseph Alabi
{"title":"首次报告美国得克萨斯州百合花(Lilium asiatica)自然感染百合斑驳病毒的情况。","authors":"John Oladeji Oladokun, Isaias Hernandez, Aryed N Perez-Baez, Olufemi Joseph Alabi","doi":"10.1094/PDIS-07-24-1485-PDN","DOIUrl":null,"url":null,"abstract":"<p><p>Lily (Lilium asiatica) is an important plant grown for its range of flower colors and heavy scent. In March 2024, potyvirus-like symptoms consisting of light-yellow mottling and mosaic were noticed on 12/20 lily plants in a private property in Weslaco, Hidalgo County, Texas. Two symptomatic plants (WTX1 and WTX2) were sampled randomly for virus diagnosis. The leaf extracts of both samples were negative for the potyvirus group using Agdia's Poty ImmunoStrip® (Agdia, Inc., Elkhart, IN, USA). However, rub-inoculation of the extracts onto healthy Nicotiana benthamiana and Vigna unguiculata plants (n=4, each) induced mild mottle symptoms on the systemic leaves of both herbaceous test plants 20 to 28 days post inoculation, indicating the presence of a mechanically transmissible agent in the samples. No virus-like symptoms were observed on the mock-inoculated plants (n=1, each) of both species. To test for suspected potyvirus infection, 2-µg of total nucleic acid extracts (Dellaporta et al. 1983) from WTX1 and WTX2 were used for complimentary DNA (cDNA) synthesis with Oligo(dT) primer and the PrimeScript 1st strand cDNA synthesis kit (Takara Bio, USA). One microliter aliquot of each cDNA served as template in 12.5-µl conventional PCR reaction volumes with 5 U Taq polymerase (Roche Diagnostics, Indianapolis, IN), and two pairs of degenerate primers targeting the partial cylindrical inclusion (CI) gene and the helper component protease (HC-Pro) of potyviruses (Ha et al. 2008). The expected ~700-bp DNA product of each gene target was amplified from both samples. The amplicons were excised, gel eluted (Zymoclean™ Gel DNA Recovery kit) and cloned individually into the pJET1.2/Blunt vector (Life Technologies). Recombinant plasmids from two transformed Escherichia coli cells per cloned DNA insert were Sanger sequenced. BLASTn analysis of each gene-specific nucleotide (nt) sequence fragment revealed their identities (83 to 92 % nt) as lily mottle virus (LMoV; genus Potyvirus) at 93 to 98% query coverage. In pairwise comparison, the obtained sequences of LMoV isolates from TX specific to the CI (GenBank accession nos. PQ037260-61) and the HC-Pro (PQ037262-63) shared ~99% nt and 100% amino acid (aa) identities with each other and ~91-92% nt and 98-100% aa identities with the closest isolate, Bate5 (JN127341) from Australia. Based on these results, a pair of LMoV-specific primers (LM_v109-F: 5'-GGCCAGTAATGTGCACAAGC-3' and LM_c527-R: 5'-TCGCTGTAGCTAGCGACGTAC-3') was newly designed to target the partial CI gene, internal to the 700-bp fragment obtained above with the generic primers. The primer pair was used to screen each of the mechanically inoculated test plants by RT-PCR as previously described above. The expected 438-bp fragment of the LMoV CI gene was amplified from all the inoculated plants of both N. benthamiana and V. unguiculata; the results were confirmed by Sanger sequencing as described above. The mock-inoculated plant of each experimental host plant tested negative for LMoV. LMoV is a quarantine pest and was previously reported in the U.S. (Brierley and Smith, 1944) and other lily-producing parts of the world, such as the Netherlands, China, Korea, and Brazil. To our knowledge, this is the first confirmed report of the virus in Texas, thus expanding its geographical range. Testing of lily foundation stocks before propagation is essential to prevent further spread of LMoV via planting material.</p>","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First report of lily mottle virus naturally infecting lily (<i>Lilium asiatica</i>) in Texas, USA.\",\"authors\":\"John Oladeji Oladokun, Isaias Hernandez, Aryed N Perez-Baez, Olufemi Joseph Alabi\",\"doi\":\"10.1094/PDIS-07-24-1485-PDN\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lily (Lilium asiatica) is an important plant grown for its range of flower colors and heavy scent. In March 2024, potyvirus-like symptoms consisting of light-yellow mottling and mosaic were noticed on 12/20 lily plants in a private property in Weslaco, Hidalgo County, Texas. Two symptomatic plants (WTX1 and WTX2) were sampled randomly for virus diagnosis. The leaf extracts of both samples were negative for the potyvirus group using Agdia's Poty ImmunoStrip® (Agdia, Inc., Elkhart, IN, USA). However, rub-inoculation of the extracts onto healthy Nicotiana benthamiana and Vigna unguiculata plants (n=4, each) induced mild mottle symptoms on the systemic leaves of both herbaceous test plants 20 to 28 days post inoculation, indicating the presence of a mechanically transmissible agent in the samples. No virus-like symptoms were observed on the mock-inoculated plants (n=1, each) of both species. To test for suspected potyvirus infection, 2-µg of total nucleic acid extracts (Dellaporta et al. 1983) from WTX1 and WTX2 were used for complimentary DNA (cDNA) synthesis with Oligo(dT) primer and the PrimeScript 1st strand cDNA synthesis kit (Takara Bio, USA). One microliter aliquot of each cDNA served as template in 12.5-µl conventional PCR reaction volumes with 5 U Taq polymerase (Roche Diagnostics, Indianapolis, IN), and two pairs of degenerate primers targeting the partial cylindrical inclusion (CI) gene and the helper component protease (HC-Pro) of potyviruses (Ha et al. 2008). The expected ~700-bp DNA product of each gene target was amplified from both samples. The amplicons were excised, gel eluted (Zymoclean™ Gel DNA Recovery kit) and cloned individually into the pJET1.2/Blunt vector (Life Technologies). Recombinant plasmids from two transformed Escherichia coli cells per cloned DNA insert were Sanger sequenced. BLASTn analysis of each gene-specific nucleotide (nt) sequence fragment revealed their identities (83 to 92 % nt) as lily mottle virus (LMoV; genus Potyvirus) at 93 to 98% query coverage. In pairwise comparison, the obtained sequences of LMoV isolates from TX specific to the CI (GenBank accession nos. PQ037260-61) and the HC-Pro (PQ037262-63) shared ~99% nt and 100% amino acid (aa) identities with each other and ~91-92% nt and 98-100% aa identities with the closest isolate, Bate5 (JN127341) from Australia. Based on these results, a pair of LMoV-specific primers (LM_v109-F: 5'-GGCCAGTAATGTGCACAAGC-3' and LM_c527-R: 5'-TCGCTGTAGCTAGCGACGTAC-3') was newly designed to target the partial CI gene, internal to the 700-bp fragment obtained above with the generic primers. The primer pair was used to screen each of the mechanically inoculated test plants by RT-PCR as previously described above. The expected 438-bp fragment of the LMoV CI gene was amplified from all the inoculated plants of both N. benthamiana and V. unguiculata; the results were confirmed by Sanger sequencing as described above. The mock-inoculated plant of each experimental host plant tested negative for LMoV. LMoV is a quarantine pest and was previously reported in the U.S. (Brierley and Smith, 1944) and other lily-producing parts of the world, such as the Netherlands, China, Korea, and Brazil. To our knowledge, this is the first confirmed report of the virus in Texas, thus expanding its geographical range. Testing of lily foundation stocks before propagation is essential to prevent further spread of LMoV via planting material.</p>\",\"PeriodicalId\":20063,\"journal\":{\"name\":\"Plant disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant disease\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PDIS-07-24-1485-PDN\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PDIS-07-24-1485-PDN","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
First report of lily mottle virus naturally infecting lily (Lilium asiatica) in Texas, USA.
Lily (Lilium asiatica) is an important plant grown for its range of flower colors and heavy scent. In March 2024, potyvirus-like symptoms consisting of light-yellow mottling and mosaic were noticed on 12/20 lily plants in a private property in Weslaco, Hidalgo County, Texas. Two symptomatic plants (WTX1 and WTX2) were sampled randomly for virus diagnosis. The leaf extracts of both samples were negative for the potyvirus group using Agdia's Poty ImmunoStrip® (Agdia, Inc., Elkhart, IN, USA). However, rub-inoculation of the extracts onto healthy Nicotiana benthamiana and Vigna unguiculata plants (n=4, each) induced mild mottle symptoms on the systemic leaves of both herbaceous test plants 20 to 28 days post inoculation, indicating the presence of a mechanically transmissible agent in the samples. No virus-like symptoms were observed on the mock-inoculated plants (n=1, each) of both species. To test for suspected potyvirus infection, 2-µg of total nucleic acid extracts (Dellaporta et al. 1983) from WTX1 and WTX2 were used for complimentary DNA (cDNA) synthesis with Oligo(dT) primer and the PrimeScript 1st strand cDNA synthesis kit (Takara Bio, USA). One microliter aliquot of each cDNA served as template in 12.5-µl conventional PCR reaction volumes with 5 U Taq polymerase (Roche Diagnostics, Indianapolis, IN), and two pairs of degenerate primers targeting the partial cylindrical inclusion (CI) gene and the helper component protease (HC-Pro) of potyviruses (Ha et al. 2008). The expected ~700-bp DNA product of each gene target was amplified from both samples. The amplicons were excised, gel eluted (Zymoclean™ Gel DNA Recovery kit) and cloned individually into the pJET1.2/Blunt vector (Life Technologies). Recombinant plasmids from two transformed Escherichia coli cells per cloned DNA insert were Sanger sequenced. BLASTn analysis of each gene-specific nucleotide (nt) sequence fragment revealed their identities (83 to 92 % nt) as lily mottle virus (LMoV; genus Potyvirus) at 93 to 98% query coverage. In pairwise comparison, the obtained sequences of LMoV isolates from TX specific to the CI (GenBank accession nos. PQ037260-61) and the HC-Pro (PQ037262-63) shared ~99% nt and 100% amino acid (aa) identities with each other and ~91-92% nt and 98-100% aa identities with the closest isolate, Bate5 (JN127341) from Australia. Based on these results, a pair of LMoV-specific primers (LM_v109-F: 5'-GGCCAGTAATGTGCACAAGC-3' and LM_c527-R: 5'-TCGCTGTAGCTAGCGACGTAC-3') was newly designed to target the partial CI gene, internal to the 700-bp fragment obtained above with the generic primers. The primer pair was used to screen each of the mechanically inoculated test plants by RT-PCR as previously described above. The expected 438-bp fragment of the LMoV CI gene was amplified from all the inoculated plants of both N. benthamiana and V. unguiculata; the results were confirmed by Sanger sequencing as described above. The mock-inoculated plant of each experimental host plant tested negative for LMoV. LMoV is a quarantine pest and was previously reported in the U.S. (Brierley and Smith, 1944) and other lily-producing parts of the world, such as the Netherlands, China, Korea, and Brazil. To our knowledge, this is the first confirmed report of the virus in Texas, thus expanding its geographical range. Testing of lily foundation stocks before propagation is essential to prevent further spread of LMoV via planting material.
期刊介绍:
Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.