PFL-DSSE:用于配电系统状态估计的个性化联合学习方法

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2024-07-24 DOI:10.17775/CSEEJPES.2023.08830
Huayi Wu;Zhao Xu;Jiaqi Ruan;Xianzhuo Sun
{"title":"PFL-DSSE:用于配电系统状态估计的个性化联合学习方法","authors":"Huayi Wu;Zhao Xu;Jiaqi Ruan;Xianzhuo Sun","doi":"10.17775/CSEEJPES.2023.08830","DOIUrl":null,"url":null,"abstract":"A centralized framework-based data-driven framework for active distribution system state estimation (DSSE) has been widely leveraged. However, it is challenged by potential data privacy breaches due to the aggregation of raw measurement data in a data center. A personalized federated learning-based DSSE method (PFL-DSSE) is proposed in a decentralized training framework for DSSE. Experimental validation confirms that PFL-DSSE can effectively and efficiently maintain data confidentiality and enhance estimation accuracy.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609318","citationCount":"0","resultStr":"{\"title\":\"PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation\",\"authors\":\"Huayi Wu;Zhao Xu;Jiaqi Ruan;Xianzhuo Sun\",\"doi\":\"10.17775/CSEEJPES.2023.08830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A centralized framework-based data-driven framework for active distribution system state estimation (DSSE) has been widely leveraged. However, it is challenged by potential data privacy breaches due to the aggregation of raw measurement data in a data center. A personalized federated learning-based DSSE method (PFL-DSSE) is proposed in a decentralized training framework for DSSE. Experimental validation confirms that PFL-DSSE can effectively and efficiently maintain data confidentiality and enhance estimation accuracy.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609318\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10609318/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10609318/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

基于集中式框架的数据驱动型主动配电系统状态估算(DSSE)框架已得到广泛应用。然而,由于原始测量数据聚集在数据中心,它面临着潜在的数据隐私泄露挑战。在 DSSE 的分散训练框架中,提出了一种基于联合学习的个性化 DSSE 方法(PFL-DSSE)。实验验证证实,PFL-DSSE 能有效、高效地维护数据机密性并提高估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation
A centralized framework-based data-driven framework for active distribution system state estimation (DSSE) has been widely leveraged. However, it is challenged by potential data privacy breaches due to the aggregation of raw measurement data in a data center. A personalized federated learning-based DSSE method (PFL-DSSE) is proposed in a decentralized training framework for DSSE. Experimental validation confirms that PFL-DSSE can effectively and efficiently maintain data confidentiality and enhance estimation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1