基于雷达的同步高分辨率成像和像素速度分析概念,用于跟踪人体运动

IF 6.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of microwaves Pub Date : 2024-10-07 DOI:10.1109/JMW.2024.3453570
Johanna Bräunig;Simon Heinrich;Birte Coppers;Christoph Kammel;Vanessa Wirth;Marc Stamminger;Sigrid Leyendecker;Anna-Maria Liphardt;Ingrid Ullmann;Martin Vossiek
{"title":"基于雷达的同步高分辨率成像和像素速度分析概念,用于跟踪人体运动","authors":"Johanna Bräunig;Simon Heinrich;Birte Coppers;Christoph Kammel;Vanessa Wirth;Marc Stamminger;Sigrid Leyendecker;Anna-Maria Liphardt;Ingrid Ullmann;Martin Vossiek","doi":"10.1109/JMW.2024.3453570","DOIUrl":null,"url":null,"abstract":"The radar-based analysis of human motion is actively being researched due to its contact- and markerless nature and ability to measure motion directly via the Doppler effect. Especially in medical and biomechanical fields, precise movement analysis is crucial. However, existing radar-based studies typically exhibit low lateral resolution, focusing on velocity evaluations and the tracking of scattering centers resolvable in the range or Doppler domains. In this work, we present a novel concept that enables a pixel-wise velocity analysis of human motion in radar near-field imaging scenarios. For this, we utilize the well-established back-projection technique to reconstruct consecutive radar images and perform a subsequent pixel-wise phase comparison. To accurately capture pixel-specific velocities along the depth dimension, this is followed by corrections of near-field geometry distortions accounting for aperture properties and pixel positions. Our theoretical derivations are supported by comprehensive point target simulations. To assess the performance of the proposed approach, we conducted a proof-of-concept study. We tracked a hand surface's movement while performing a finger tapping motion and compared the fingertip position and velocity determined by the radar with the respective values obtained from an optical marker-based system. The results showed a velocity measurement accuracy of \n<inline-formula><tex-math>$8.1 \\,\\mathrm{mms}^{-1}$</tex-math></inline-formula>\n and a tracking accuracy of \n<inline-formula><tex-math>$1.4 \\,\\mathrm{m}\\mathrm{m}$</tex-math></inline-formula>\n, demonstrating the great potential of our approach. The high angular resolution of the velocity measurement enables the tracking of the entire illuminated body shell, extending the range of future applications of radar-based motion analysis.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"4 4","pages":"639-652"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706625","citationCount":"0","resultStr":"{\"title\":\"A Radar-Based Concept for Simultaneous High-Resolution Imaging and Pixel-Wise Velocity Analysis for Tracking Human Motion\",\"authors\":\"Johanna Bräunig;Simon Heinrich;Birte Coppers;Christoph Kammel;Vanessa Wirth;Marc Stamminger;Sigrid Leyendecker;Anna-Maria Liphardt;Ingrid Ullmann;Martin Vossiek\",\"doi\":\"10.1109/JMW.2024.3453570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radar-based analysis of human motion is actively being researched due to its contact- and markerless nature and ability to measure motion directly via the Doppler effect. Especially in medical and biomechanical fields, precise movement analysis is crucial. However, existing radar-based studies typically exhibit low lateral resolution, focusing on velocity evaluations and the tracking of scattering centers resolvable in the range or Doppler domains. In this work, we present a novel concept that enables a pixel-wise velocity analysis of human motion in radar near-field imaging scenarios. For this, we utilize the well-established back-projection technique to reconstruct consecutive radar images and perform a subsequent pixel-wise phase comparison. To accurately capture pixel-specific velocities along the depth dimension, this is followed by corrections of near-field geometry distortions accounting for aperture properties and pixel positions. Our theoretical derivations are supported by comprehensive point target simulations. To assess the performance of the proposed approach, we conducted a proof-of-concept study. We tracked a hand surface's movement while performing a finger tapping motion and compared the fingertip position and velocity determined by the radar with the respective values obtained from an optical marker-based system. The results showed a velocity measurement accuracy of \\n<inline-formula><tex-math>$8.1 \\\\,\\\\mathrm{mms}^{-1}$</tex-math></inline-formula>\\n and a tracking accuracy of \\n<inline-formula><tex-math>$1.4 \\\\,\\\\mathrm{m}\\\\mathrm{m}$</tex-math></inline-formula>\\n, demonstrating the great potential of our approach. The high angular resolution of the velocity measurement enables the tracking of the entire illuminated body shell, extending the range of future applications of radar-based motion analysis.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"4 4\",\"pages\":\"639-652\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706625\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706625/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706625/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于雷达具有无接触、无标记的特性,并能通过多普勒效应直接测量运动,因此基于雷达的人体运动分析正在被积极研究。特别是在医疗和生物力学领域,精确的运动分析至关重要。然而,现有的基于雷达的研究通常显示出较低的横向分辨率,侧重于速度评估和散射中心的跟踪,而散射中心可在测距域或多普勒域中解析。在这项工作中,我们提出了一个新概念,可在雷达近场成像场景中对人体运动进行像素速度分析。为此,我们利用成熟的反投影技术来重建连续的雷达图像,并随后进行像素级相位比较。为了沿着深度维度准确捕捉特定像素的速度,随后会根据孔径属性和像素位置对近场几何失真进行校正。我们的理论推导得到了全面的点目标模拟的支持。为了评估所提出方法的性能,我们进行了概念验证研究。我们在进行手指敲击动作时跟踪了手部表面的运动,并将雷达确定的指尖位置和速度与基于光学标记系统获得的相应值进行了比较。结果显示,速度测量精度为 8.1 \,\mathrm{mms}^{-1}$,跟踪精度为 1.4 \,\mathrm{m}\mathrm{m}$,证明了我们的方法具有巨大的潜力。速度测量的高角度分辨率使我们能够跟踪整个被照亮的体壳,从而扩大了基于雷达的运动分析的未来应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Radar-Based Concept for Simultaneous High-Resolution Imaging and Pixel-Wise Velocity Analysis for Tracking Human Motion
The radar-based analysis of human motion is actively being researched due to its contact- and markerless nature and ability to measure motion directly via the Doppler effect. Especially in medical and biomechanical fields, precise movement analysis is crucial. However, existing radar-based studies typically exhibit low lateral resolution, focusing on velocity evaluations and the tracking of scattering centers resolvable in the range or Doppler domains. In this work, we present a novel concept that enables a pixel-wise velocity analysis of human motion in radar near-field imaging scenarios. For this, we utilize the well-established back-projection technique to reconstruct consecutive radar images and perform a subsequent pixel-wise phase comparison. To accurately capture pixel-specific velocities along the depth dimension, this is followed by corrections of near-field geometry distortions accounting for aperture properties and pixel positions. Our theoretical derivations are supported by comprehensive point target simulations. To assess the performance of the proposed approach, we conducted a proof-of-concept study. We tracked a hand surface's movement while performing a finger tapping motion and compared the fingertip position and velocity determined by the radar with the respective values obtained from an optical marker-based system. The results showed a velocity measurement accuracy of $8.1 \,\mathrm{mms}^{-1}$ and a tracking accuracy of $1.4 \,\mathrm{m}\mathrm{m}$ , demonstrating the great potential of our approach. The high angular resolution of the velocity measurement enables the tracking of the entire illuminated body shell, extending the range of future applications of radar-based motion analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Front Cover Table of Contents Introduction to the Fall 2024 Issue IEEE Microwave Theory and Technology Society Information Over-the-Air Phase Noise Spectral Density Measurement for FMCW Radar Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1