基于无人机传感的荔枝分割技术(使用改进的掩模-RCNN),用于精准农业

Bhabesh Deka;Debarun Chakraborty
{"title":"基于无人机传感的荔枝分割技术(使用改进的掩模-RCNN),用于精准农业","authors":"Bhabesh Deka;Debarun Chakraborty","doi":"10.1109/TAFE.2024.3420028","DOIUrl":null,"url":null,"abstract":"Traditional methods of manual litchi fruit counting are labor-intensive, time-consuming, and prone to errors. Moreover, due to its complex growth structures, such as occlusion with leaves and branches, overlapping, and uneven color, it becomes more challenging for the current baseline detection and instance segmentation models to accurately identify the litchi fruits. The advancement of deep learning architecture and modern sensing technology, such as unmanned aerial vehicle (UAV), had shown great potential for improving fruit counting accuracy and efficiency. In this article, we propose a modified Mask-region-based convolutional neural network-based instance segmentation model using channel attention to detect and count litchis in complex natural environments using UAV. In addition, we build a UAV-Litchi dataset consisting of 1000 images with 31 000 litchi annotations, collected by the DJI Phantom 4 with RGB sensor and labeled with a LabelImg annotation tool. Experimental results show that the proposed model with the squeeze-and-excitation block improves the detection accuracy of litchi fruits, achieving a mean average precision, recall, and F1 score of 81.47%, 92.81%, and 88.40%, respectively, with an average inference time of 7.72 s. The high accuracy and efficiency of the proposed model demonstrate its potential for precise and accurate litchi detection in precision agriculture.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"509-517"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV Sensing-Based Litchi Segmentation Using Modified Mask-RCNN for Precision Agriculture\",\"authors\":\"Bhabesh Deka;Debarun Chakraborty\",\"doi\":\"10.1109/TAFE.2024.3420028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional methods of manual litchi fruit counting are labor-intensive, time-consuming, and prone to errors. Moreover, due to its complex growth structures, such as occlusion with leaves and branches, overlapping, and uneven color, it becomes more challenging for the current baseline detection and instance segmentation models to accurately identify the litchi fruits. The advancement of deep learning architecture and modern sensing technology, such as unmanned aerial vehicle (UAV), had shown great potential for improving fruit counting accuracy and efficiency. In this article, we propose a modified Mask-region-based convolutional neural network-based instance segmentation model using channel attention to detect and count litchis in complex natural environments using UAV. In addition, we build a UAV-Litchi dataset consisting of 1000 images with 31 000 litchi annotations, collected by the DJI Phantom 4 with RGB sensor and labeled with a LabelImg annotation tool. Experimental results show that the proposed model with the squeeze-and-excitation block improves the detection accuracy of litchi fruits, achieving a mean average precision, recall, and F1 score of 81.47%, 92.81%, and 88.40%, respectively, with an average inference time of 7.72 s. The high accuracy and efficiency of the proposed model demonstrate its potential for precise and accurate litchi detection in precision agriculture.\",\"PeriodicalId\":100637,\"journal\":{\"name\":\"IEEE Transactions on AgriFood Electronics\",\"volume\":\"2 2\",\"pages\":\"509-517\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on AgriFood Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10596987/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10596987/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的人工荔枝果计数方法耗费大量人力、时间,而且容易出错。此外,由于荔枝果实生长结构复杂,如枝叶遮挡、重叠、颜色不均等,现有的基线检测和实例分割模型要准确识别荔枝果实更具挑战性。深度学习架构和现代传感技术(如无人机)的发展,为提高水果计数的准确性和效率带来了巨大的潜力。在本文中,我们提出了一种基于掩膜区域卷积神经网络的改进型实例分割模型,利用通道注意力在复杂的自然环境中使用无人机对荔枝进行检测和计数。此外,我们还建立了一个无人机-荔枝数据集,该数据集由带有 RGB 传感器的大疆 Phantom 4 采集的 1000 张带有 31 000 个荔枝注释的图像组成,并使用 LabelImg 注释工具进行了标注。实验结果表明,带有挤压-激发块的拟议模型提高了荔枝果的检测精度,平均精度、召回率和 F1 分数分别达到 81.47%、92.81% 和 88.40%,平均推理时间为 7.72 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAV Sensing-Based Litchi Segmentation Using Modified Mask-RCNN for Precision Agriculture
Traditional methods of manual litchi fruit counting are labor-intensive, time-consuming, and prone to errors. Moreover, due to its complex growth structures, such as occlusion with leaves and branches, overlapping, and uneven color, it becomes more challenging for the current baseline detection and instance segmentation models to accurately identify the litchi fruits. The advancement of deep learning architecture and modern sensing technology, such as unmanned aerial vehicle (UAV), had shown great potential for improving fruit counting accuracy and efficiency. In this article, we propose a modified Mask-region-based convolutional neural network-based instance segmentation model using channel attention to detect and count litchis in complex natural environments using UAV. In addition, we build a UAV-Litchi dataset consisting of 1000 images with 31 000 litchi annotations, collected by the DJI Phantom 4 with RGB sensor and labeled with a LabelImg annotation tool. Experimental results show that the proposed model with the squeeze-and-excitation block improves the detection accuracy of litchi fruits, achieving a mean average precision, recall, and F1 score of 81.47%, 92.81%, and 88.40%, respectively, with an average inference time of 7.72 s. The high accuracy and efficiency of the proposed model demonstrate its potential for precise and accurate litchi detection in precision agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on AgriFood Electronics Vol. 2 Table of Contents Front Cover IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1