iCrop:农业智能作物推荐系统 5.0

Tanushree Dey;Somnath Bera;Lakshman Prasad Latua;Milan Parua;Anwesha Mukherjee;Debashis De
{"title":"iCrop:农业智能作物推荐系统 5.0","authors":"Tanushree Dey;Somnath Bera;Lakshman Prasad Latua;Milan Parua;Anwesha Mukherjee;Debashis De","doi":"10.1109/TAFE.2024.3454109","DOIUrl":null,"url":null,"abstract":"This article proposes a crop yield prediction and recommendation system for agriculture 5.0 based on edge computing, machine learning (ML), and steganography. In comparison with the existing crop yield prediction and recommendation frameworks, for the first time we are integrating steganography with edge computing and ML to provide a secure crop yield prediction and recommendation system. In the proposed system, an edge device is used for data preprocessing, and the private cloud server referred to as agri-server is maintained for data analysis and storage. For protecting data privacy during transmission, modified least significant bit-based image steganography is used. For data analysis, six ML approaches are used and compared based on their performance. The experimental results demonstrate that each ML approach achieves above 90% accuracy in crop yield prediction. The results also present that the proposed framework achieves highest prediction accuracy of 99.9% which is better than the existing crop yield prediction frameworks. The results also demonstrate that the proposed framework reduces the latency and energy consumption by \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n10% compared to the remote cloud-based crop yield prediction framework.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"587-595"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"iCrop: An Intelligent Crop Recommendation System for Agriculture 5.0\",\"authors\":\"Tanushree Dey;Somnath Bera;Lakshman Prasad Latua;Milan Parua;Anwesha Mukherjee;Debashis De\",\"doi\":\"10.1109/TAFE.2024.3454109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a crop yield prediction and recommendation system for agriculture 5.0 based on edge computing, machine learning (ML), and steganography. In comparison with the existing crop yield prediction and recommendation frameworks, for the first time we are integrating steganography with edge computing and ML to provide a secure crop yield prediction and recommendation system. In the proposed system, an edge device is used for data preprocessing, and the private cloud server referred to as agri-server is maintained for data analysis and storage. For protecting data privacy during transmission, modified least significant bit-based image steganography is used. For data analysis, six ML approaches are used and compared based on their performance. The experimental results demonstrate that each ML approach achieves above 90% accuracy in crop yield prediction. The results also present that the proposed framework achieves highest prediction accuracy of 99.9% which is better than the existing crop yield prediction frameworks. The results also demonstrate that the proposed framework reduces the latency and energy consumption by \\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n10% compared to the remote cloud-based crop yield prediction framework.\",\"PeriodicalId\":100637,\"journal\":{\"name\":\"IEEE Transactions on AgriFood Electronics\",\"volume\":\"2 2\",\"pages\":\"587-595\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on AgriFood Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10683970/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10683970/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于边缘计算、机器学习(ML)和隐写技术的农业 5.0 农作物产量预测和推荐系统。与现有的作物产量预测和推荐框架相比,我们首次将隐写术与边缘计算和 ML 相结合,提供了一个安全的作物产量预测和推荐系统。在提议的系统中,边缘设备用于数据预处理,而被称为农业服务器的私有云服务器则用于数据分析和存储。为了在传输过程中保护数据隐私,使用了基于最小有效位的修正图像隐写术。在数据分析方面,使用了六种 ML 方法,并根据其性能进行了比较。实验结果表明,每种 ML 方法在作物产量预测方面的准确率都超过了 90%。结果还表明,拟议框架的预测准确率最高,达到 99.9%,优于现有的作物产量预测框架。结果还表明,与基于云的远程作物产量预测框架相比,拟议框架减少了 10% 的延迟和能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iCrop: An Intelligent Crop Recommendation System for Agriculture 5.0
This article proposes a crop yield prediction and recommendation system for agriculture 5.0 based on edge computing, machine learning (ML), and steganography. In comparison with the existing crop yield prediction and recommendation frameworks, for the first time we are integrating steganography with edge computing and ML to provide a secure crop yield prediction and recommendation system. In the proposed system, an edge device is used for data preprocessing, and the private cloud server referred to as agri-server is maintained for data analysis and storage. For protecting data privacy during transmission, modified least significant bit-based image steganography is used. For data analysis, six ML approaches are used and compared based on their performance. The experimental results demonstrate that each ML approach achieves above 90% accuracy in crop yield prediction. The results also present that the proposed framework achieves highest prediction accuracy of 99.9% which is better than the existing crop yield prediction frameworks. The results also demonstrate that the proposed framework reduces the latency and energy consumption by $\sim$ 10% compared to the remote cloud-based crop yield prediction framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on AgriFood Electronics Vol. 2 Table of Contents Front Cover IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1