Lan Zhang, Yan Bai, Rui Zhang, Yuexin Ma, Chongwen Shen
{"title":"员工差旅的碳排放特征与碳减排分析--以某研究所为例","authors":"Lan Zhang, Yan Bai, Rui Zhang, Yuexin Ma, Chongwen Shen","doi":"10.1186/s42162-024-00407-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper adopts the “baseline scenario method” to construct a comprehensive model for calculating and reducing carbon emissions generated by employee travel, including the accounting of carbon emissions from commuting and business travel, as well as the assessment of green travel for carbon reduction. The study employs methods such as questionnaires and on-site interviews to collect travel data from employees of a research institute in Beijing as a case study. The results show that employees’ commuting methods are diverse, with the subway being the primary mode of travel; however, business travel generates higher carbon emissions, particularly among employees with higher education levels. The research concludes that the model proposed in this paper provides a framework for preliminary carbon emission estimation, but to improve the accuracy of the estimates, more variables and factors need to be considered, and the limitations of the model are pointed out. The research findings have significant implications for policy and institutional practices, suggesting the adoption of more targeted measures to reduce the use of high-carbon-emission travel methods and to encourage the use of green travel options. With the continuous advancement of data collection technologies in the future, it will be possible to further establish a more refined carbon emission accounting model and obtain more accurate and comprehensive travel data, thereby providing solid data support for the development of more effective carbon reduction strategies and policies.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00407-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Carbon emission characteristics and carbon reduction analysis of employee travel-taking a research institute as an example\",\"authors\":\"Lan Zhang, Yan Bai, Rui Zhang, Yuexin Ma, Chongwen Shen\",\"doi\":\"10.1186/s42162-024-00407-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper adopts the “baseline scenario method” to construct a comprehensive model for calculating and reducing carbon emissions generated by employee travel, including the accounting of carbon emissions from commuting and business travel, as well as the assessment of green travel for carbon reduction. The study employs methods such as questionnaires and on-site interviews to collect travel data from employees of a research institute in Beijing as a case study. The results show that employees’ commuting methods are diverse, with the subway being the primary mode of travel; however, business travel generates higher carbon emissions, particularly among employees with higher education levels. The research concludes that the model proposed in this paper provides a framework for preliminary carbon emission estimation, but to improve the accuracy of the estimates, more variables and factors need to be considered, and the limitations of the model are pointed out. The research findings have significant implications for policy and institutional practices, suggesting the adoption of more targeted measures to reduce the use of high-carbon-emission travel methods and to encourage the use of green travel options. With the continuous advancement of data collection technologies in the future, it will be possible to further establish a more refined carbon emission accounting model and obtain more accurate and comprehensive travel data, thereby providing solid data support for the development of more effective carbon reduction strategies and policies.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s42162-024-00407-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00407-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00407-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Carbon emission characteristics and carbon reduction analysis of employee travel-taking a research institute as an example
This paper adopts the “baseline scenario method” to construct a comprehensive model for calculating and reducing carbon emissions generated by employee travel, including the accounting of carbon emissions from commuting and business travel, as well as the assessment of green travel for carbon reduction. The study employs methods such as questionnaires and on-site interviews to collect travel data from employees of a research institute in Beijing as a case study. The results show that employees’ commuting methods are diverse, with the subway being the primary mode of travel; however, business travel generates higher carbon emissions, particularly among employees with higher education levels. The research concludes that the model proposed in this paper provides a framework for preliminary carbon emission estimation, but to improve the accuracy of the estimates, more variables and factors need to be considered, and the limitations of the model are pointed out. The research findings have significant implications for policy and institutional practices, suggesting the adoption of more targeted measures to reduce the use of high-carbon-emission travel methods and to encourage the use of green travel options. With the continuous advancement of data collection technologies in the future, it will be possible to further establish a more refined carbon emission accounting model and obtain more accurate and comprehensive travel data, thereby providing solid data support for the development of more effective carbon reduction strategies and policies.