Abir Khan, S.M. Sapuan, E.S. Zainudin, M.Y.M. Zuhri
{"title":"竹纤维增强聚合物复合材料中的杂化及其变革作用:综述","authors":"Abir Khan, S.M. Sapuan, E.S. Zainudin, M.Y.M. Zuhri","doi":"10.1007/s42114-024-00974-8","DOIUrl":null,"url":null,"abstract":"<div><p>Design and development of environmentally friendly composite materials is underway in response to escalating environmental concerns and the looming scarcity of petroleum-based resources. A key strategy in this endeavor is the application of biologically derived polymers, reinforced with organic fibers. This approach has appeared to be a potent substitute for synthetic fiber-reinforced polymers in the development of composite materials. Among the organic fibers, bamboo has seen a surge in popularity due to its wide availability, cost-effectiveness, biodegradability, and superior mechanical properties. However, bamboo fiber is combined with other natural fibers in order to maximize the performance, address limitations, and broaden the scope of application of bamboo fiber-reinforced hybrid polymer composites. This review covers topics including the anatomy of bamboo and the chemical composition of bamboo fiber. Later on, different aspects of hybrid composites such as configurations of fibers and polymers, orientation of fibers, mechanical properties, thermal properties, biodegradability and applications in aerospace, ballistic protection, automotive, structural, filtration, electrode, electromagnetic wave absorption, sensor technologies, and infrared shielding are discussed. This review also highlights several problems and solutions in the development of bamboo hybrid composites. This article offers valuable perspectives and recommendations for those engaged in the field of green composites, paving the way for the creation of sustainable materials suitable for diverse applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridization and its transformative role in bamboo fiber reinforced polymer composites: a review\",\"authors\":\"Abir Khan, S.M. Sapuan, E.S. Zainudin, M.Y.M. Zuhri\",\"doi\":\"10.1007/s42114-024-00974-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Design and development of environmentally friendly composite materials is underway in response to escalating environmental concerns and the looming scarcity of petroleum-based resources. A key strategy in this endeavor is the application of biologically derived polymers, reinforced with organic fibers. This approach has appeared to be a potent substitute for synthetic fiber-reinforced polymers in the development of composite materials. Among the organic fibers, bamboo has seen a surge in popularity due to its wide availability, cost-effectiveness, biodegradability, and superior mechanical properties. However, bamboo fiber is combined with other natural fibers in order to maximize the performance, address limitations, and broaden the scope of application of bamboo fiber-reinforced hybrid polymer composites. This review covers topics including the anatomy of bamboo and the chemical composition of bamboo fiber. Later on, different aspects of hybrid composites such as configurations of fibers and polymers, orientation of fibers, mechanical properties, thermal properties, biodegradability and applications in aerospace, ballistic protection, automotive, structural, filtration, electrode, electromagnetic wave absorption, sensor technologies, and infrared shielding are discussed. This review also highlights several problems and solutions in the development of bamboo hybrid composites. This article offers valuable perspectives and recommendations for those engaged in the field of green composites, paving the way for the creation of sustainable materials suitable for diverse applications.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00974-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00974-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Hybridization and its transformative role in bamboo fiber reinforced polymer composites: a review
Design and development of environmentally friendly composite materials is underway in response to escalating environmental concerns and the looming scarcity of petroleum-based resources. A key strategy in this endeavor is the application of biologically derived polymers, reinforced with organic fibers. This approach has appeared to be a potent substitute for synthetic fiber-reinforced polymers in the development of composite materials. Among the organic fibers, bamboo has seen a surge in popularity due to its wide availability, cost-effectiveness, biodegradability, and superior mechanical properties. However, bamboo fiber is combined with other natural fibers in order to maximize the performance, address limitations, and broaden the scope of application of bamboo fiber-reinforced hybrid polymer composites. This review covers topics including the anatomy of bamboo and the chemical composition of bamboo fiber. Later on, different aspects of hybrid composites such as configurations of fibers and polymers, orientation of fibers, mechanical properties, thermal properties, biodegradability and applications in aerospace, ballistic protection, automotive, structural, filtration, electrode, electromagnetic wave absorption, sensor technologies, and infrared shielding are discussed. This review also highlights several problems and solutions in the development of bamboo hybrid composites. This article offers valuable perspectives and recommendations for those engaged in the field of green composites, paving the way for the creation of sustainable materials suitable for diverse applications.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.