设计用于计算立方体卫星功率预算的新型人工智能技术

Q3 Earth and Planetary Sciences Aerospace Systems Pub Date : 2024-03-04 DOI:10.1007/s42401-024-00278-1
Ahmed Mokhtar Mohamed Refaie, Mohamed Sameh Elkerdany, Y. Z. Elhalwagy, Fawzy ElTohamy H. Amer, Mohamed E. Hanafy
{"title":"设计用于计算立方体卫星功率预算的新型人工智能技术","authors":"Ahmed Mokhtar Mohamed Refaie,&nbsp;Mohamed Sameh Elkerdany,&nbsp;Y. Z. Elhalwagy,&nbsp;Fawzy ElTohamy H. Amer,&nbsp;Mohamed E. Hanafy","doi":"10.1007/s42401-024-00278-1","DOIUrl":null,"url":null,"abstract":"<div><p>The electrical power subsystem (EPS) is one of the most critical subsystems in a spacecraft (SC). It provides the power needed for SC loads. Any failure in the EPS leads to SC mission failure. However, power budget calculation is necessary for the analysis of the energy flow of the SC subsystems for in-orbit nominal operation and to ensure the adequacy of solar array (SA) power and storage battery capacity. The average power generated by SA of a SC should be carefully calculated to accurately estimate the energy budget process. Nevertheless, SC operational scenarios should be designed and then justified by the power budget calculation. The investigation of power capability is to satisfy the mission requirements for all nominal operating modes of the SC. The solar illumination and orbit shadow period, as well as EPS parameters including SA output power, bus voltage, load profile, and storage battery capacity graph during in-orbit nominal operation, are all taken into consideration. In this paper, a mission profile with the worst-case scenario (WCS) for EPS of a Low-earth orbit (LEO) Cube-Sat is demonstrated. Moreover, a novel energy management strategy is developed using artificial intelligence to justify the power budget calculation of SC EPS.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a novel artificial intelligence technique for Cube-Sat power budget calculations\",\"authors\":\"Ahmed Mokhtar Mohamed Refaie,&nbsp;Mohamed Sameh Elkerdany,&nbsp;Y. Z. Elhalwagy,&nbsp;Fawzy ElTohamy H. Amer,&nbsp;Mohamed E. Hanafy\",\"doi\":\"10.1007/s42401-024-00278-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrical power subsystem (EPS) is one of the most critical subsystems in a spacecraft (SC). It provides the power needed for SC loads. Any failure in the EPS leads to SC mission failure. However, power budget calculation is necessary for the analysis of the energy flow of the SC subsystems for in-orbit nominal operation and to ensure the adequacy of solar array (SA) power and storage battery capacity. The average power generated by SA of a SC should be carefully calculated to accurately estimate the energy budget process. Nevertheless, SC operational scenarios should be designed and then justified by the power budget calculation. The investigation of power capability is to satisfy the mission requirements for all nominal operating modes of the SC. The solar illumination and orbit shadow period, as well as EPS parameters including SA output power, bus voltage, load profile, and storage battery capacity graph during in-orbit nominal operation, are all taken into consideration. In this paper, a mission profile with the worst-case scenario (WCS) for EPS of a Low-earth orbit (LEO) Cube-Sat is demonstrated. Moreover, a novel energy management strategy is developed using artificial intelligence to justify the power budget calculation of SC EPS.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-024-00278-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00278-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

电力子系统(EPS)是航天器(SC)中最关键的子系统之一。它为 SC 负载提供所需的电力。EPS 的任何故障都会导致 SC 任务失败。然而,功率预算计算对于分析 SC 子系统在轨额定运行的能量流以及确保太阳能电池组(SA)功率和蓄电池容量的充足性是必要的。应仔细计算 SC 的太阳能电池板产生的平均功率,以准确估算能量预算过程。不过,应设计太阳能电池板的运行方案,然后通过功率预算计算来证明其合理性。对动力能力的考察是为了满足飞行任务对太阳能电池板所有额定运行模式的要求。太阳光照度和轨道阴影周期以及 EPS 参数(包括在轨标称运行期间的 SA 输出功率、总线电压、负载曲线和蓄电池容量图)都在考虑之列。本文展示了低地轨道(LEO)立方体卫星 EPS 的最坏情况(WCS)任务概况。此外,还利用人工智能开发了一种新型能源管理策略,以证明 SC EPS 功率预算计算的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a novel artificial intelligence technique for Cube-Sat power budget calculations

The electrical power subsystem (EPS) is one of the most critical subsystems in a spacecraft (SC). It provides the power needed for SC loads. Any failure in the EPS leads to SC mission failure. However, power budget calculation is necessary for the analysis of the energy flow of the SC subsystems for in-orbit nominal operation and to ensure the adequacy of solar array (SA) power and storage battery capacity. The average power generated by SA of a SC should be carefully calculated to accurately estimate the energy budget process. Nevertheless, SC operational scenarios should be designed and then justified by the power budget calculation. The investigation of power capability is to satisfy the mission requirements for all nominal operating modes of the SC. The solar illumination and orbit shadow period, as well as EPS parameters including SA output power, bus voltage, load profile, and storage battery capacity graph during in-orbit nominal operation, are all taken into consideration. In this paper, a mission profile with the worst-case scenario (WCS) for EPS of a Low-earth orbit (LEO) Cube-Sat is demonstrated. Moreover, a novel energy management strategy is developed using artificial intelligence to justify the power budget calculation of SC EPS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
期刊最新文献
Trajectory prediction for fighter aircraft ground collision avoidance based on the model predictive control technique Initial gap modeling for wing assembly analysis A survey on synthetic jets as active flow control Deconvolution of mode composition beamforming for rotating source localization Computational study on effect of free-stream turbulence on bio-inspired corrugated airfoil at different sections at low Reynolds number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1