H. Bayrak, A. M. Fahim, G. M. Boyraci, F. Y. Karahalil
{"title":"新型丙烯酰胺衍生物的合成、硅学研究、抗菌和抗氧化活性、对接模拟和计算分析","authors":"H. Bayrak, A. M. Fahim, G. M. Boyraci, F. Y. Karahalil","doi":"10.1134/S1070363224080188","DOIUrl":null,"url":null,"abstract":"<p>New acrylamide compounds based on 4-aminoantipyrine were synthesized. 4-Acetaminoantipyrine was synthesized and its reactivity with salicylic aldehyde, vanillin, isovanillin and 5-methoxysalicylaldehyde with the formation of new <i>N</i>-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1<i>H</i>-pyrazol-4-yl)-3-(aryl)acrylamides was investigated. In addition, synthesized acrylamides were screened for ADME studies to elucidate their properties. The antimicrobial and antioxidant activitiy of the newly synthesized compounds were exceptionally high, surpassing the performance of the reference standard drug. Molecular docking simulations further confirmed these results, highlighting the heightened activity attributed to the substitute groups on the aromatic rings with different proteins and showed different interactions, confirming their biological evaluation. The optimization of target compounds using the DFT/B3LYP/6-311G(d) basis set demonstrated their stability and provided insights into their physical descriptors—Electrostatic Potential (ESP) and Molecular Electrostatic Potential (MEP). The analysis revealed both electrophilic and nucleophilic characters, showcasing their versatile binding capabilities in various pockets and confirming the biological results.</p>","PeriodicalId":761,"journal":{"name":"Russian Journal of General Chemistry","volume":"94 8","pages":"2044 - 2060"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, In Silico Studies, Antimicrobial, Antioxidant Activities, Docking Simulation, and Computational Analysis of Novel Acrylamide Derivatives\",\"authors\":\"H. Bayrak, A. M. Fahim, G. M. Boyraci, F. Y. Karahalil\",\"doi\":\"10.1134/S1070363224080188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>New acrylamide compounds based on 4-aminoantipyrine were synthesized. 4-Acetaminoantipyrine was synthesized and its reactivity with salicylic aldehyde, vanillin, isovanillin and 5-methoxysalicylaldehyde with the formation of new <i>N</i>-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1<i>H</i>-pyrazol-4-yl)-3-(aryl)acrylamides was investigated. In addition, synthesized acrylamides were screened for ADME studies to elucidate their properties. The antimicrobial and antioxidant activitiy of the newly synthesized compounds were exceptionally high, surpassing the performance of the reference standard drug. Molecular docking simulations further confirmed these results, highlighting the heightened activity attributed to the substitute groups on the aromatic rings with different proteins and showed different interactions, confirming their biological evaluation. The optimization of target compounds using the DFT/B3LYP/6-311G(d) basis set demonstrated their stability and provided insights into their physical descriptors—Electrostatic Potential (ESP) and Molecular Electrostatic Potential (MEP). The analysis revealed both electrophilic and nucleophilic characters, showcasing their versatile binding capabilities in various pockets and confirming the biological results.</p>\",\"PeriodicalId\":761,\"journal\":{\"name\":\"Russian Journal of General Chemistry\",\"volume\":\"94 8\",\"pages\":\"2044 - 2060\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of General Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1070363224080188\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of General Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070363224080188","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, In Silico Studies, Antimicrobial, Antioxidant Activities, Docking Simulation, and Computational Analysis of Novel Acrylamide Derivatives
New acrylamide compounds based on 4-aminoantipyrine were synthesized. 4-Acetaminoantipyrine was synthesized and its reactivity with salicylic aldehyde, vanillin, isovanillin and 5-methoxysalicylaldehyde with the formation of new N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-3-(aryl)acrylamides was investigated. In addition, synthesized acrylamides were screened for ADME studies to elucidate their properties. The antimicrobial and antioxidant activitiy of the newly synthesized compounds were exceptionally high, surpassing the performance of the reference standard drug. Molecular docking simulations further confirmed these results, highlighting the heightened activity attributed to the substitute groups on the aromatic rings with different proteins and showed different interactions, confirming their biological evaluation. The optimization of target compounds using the DFT/B3LYP/6-311G(d) basis set demonstrated their stability and provided insights into their physical descriptors—Electrostatic Potential (ESP) and Molecular Electrostatic Potential (MEP). The analysis revealed both electrophilic and nucleophilic characters, showcasing their versatile binding capabilities in various pockets and confirming the biological results.
期刊介绍:
Russian Journal of General Chemistry is a journal that covers many problems that are of general interest to the whole community of chemists. The journal is the successor to Russia’s first chemical journal, Zhurnal Russkogo Khimicheskogo Obshchestva (Journal of the Russian Chemical Society ) founded in 1869 to cover all aspects of chemistry. Now the journal is focused on the interdisciplinary areas of chemistry (organometallics, organometalloids, organoinorganic complexes, mechanochemistry, nanochemistry, etc.), new achievements and long-term results in the field. The journal publishes reviews, current scientific papers, letters to the editor, and discussion papers.