研究放射性废物元素在粘土材料孔隙溶液中扩散的耦合过程方法

IF 0.9 Q4 CHEMISTRY, INORGANIC & NUCLEAR Radiochemistry Pub Date : 2024-10-06 DOI:10.1134/S1066362224040179
K. V. Martynov, E. V. Zakharova
{"title":"研究放射性废物元素在粘土材料孔隙溶液中扩散的耦合过程方法","authors":"K. V. Martynov,&nbsp;E. V. Zakharova","doi":"10.1134/S1066362224040179","DOIUrl":null,"url":null,"abstract":"<p>A method of coupled processes was proposed to maintain concentrations in the model leachate of the radioactive waste phosphate matrix, which served as a source of elements in the study of through-diffusion of P, Se, Br, Mo, Cs, and U in the pore solution of compacted clay materials. The method consisted in adding an leachatable solid phase to the solution in the source chamber of the diffusion cell. The use of this method made it possible to stabilize the boundary conditions and expand the range of element concentrations in the source chamber of diffusion cells. The new as-obtained data on the effective diffusion coefficients of radioactive waste elements in clay rocks were used to refine the empirical models of diffusion transfer. It is shown that in different geochemical systems (model groundwater and phosphate glass leachate) for some elements (Br, Mo, Cs) it is possible to use unified models in the form of effective diffusion coefficients as a function of factors influencing this process: sample porosity, smectite content in the sample, and concentration of radionuclide (element) in pore solution, while for Se and U, diffusion models for various geochemical systems differ. The specificity of diffusion behavior of elements is associated with structural features and physicochemical properties of particles of these elements in aqueous solutions.</p>","PeriodicalId":747,"journal":{"name":"Radiochemistry","volume":"66 4","pages":"557 - 569"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method of Coupled Processes in Studying Diffusion of Radioactive Waste Elements in the Pore Solution of Clay Materials\",\"authors\":\"K. V. Martynov,&nbsp;E. V. Zakharova\",\"doi\":\"10.1134/S1066362224040179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A method of coupled processes was proposed to maintain concentrations in the model leachate of the radioactive waste phosphate matrix, which served as a source of elements in the study of through-diffusion of P, Se, Br, Mo, Cs, and U in the pore solution of compacted clay materials. The method consisted in adding an leachatable solid phase to the solution in the source chamber of the diffusion cell. The use of this method made it possible to stabilize the boundary conditions and expand the range of element concentrations in the source chamber of diffusion cells. The new as-obtained data on the effective diffusion coefficients of radioactive waste elements in clay rocks were used to refine the empirical models of diffusion transfer. It is shown that in different geochemical systems (model groundwater and phosphate glass leachate) for some elements (Br, Mo, Cs) it is possible to use unified models in the form of effective diffusion coefficients as a function of factors influencing this process: sample porosity, smectite content in the sample, and concentration of radionuclide (element) in pore solution, while for Se and U, diffusion models for various geochemical systems differ. The specificity of diffusion behavior of elements is associated with structural features and physicochemical properties of particles of these elements in aqueous solutions.</p>\",\"PeriodicalId\":747,\"journal\":{\"name\":\"Radiochemistry\",\"volume\":\"66 4\",\"pages\":\"557 - 569\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1066362224040179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1066362224040179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在研究 P、Se、Br、Mo、Cs 和 U 在压实粘土材料孔隙溶液中的穿透扩散时,提出了一种耦合过程方法,以保持放射性废物磷酸盐基质模型浸出液中的浓度。该方法包括在扩散池源室的溶液中加入可浸出的固相。使用这种方法可以稳定边界条件,扩大扩散池源室的元素浓度范围。关于放射性废料元素在粘土岩中有效扩散系数的新数据被用来完善扩散转移的经验模型。结果表明,在不同的地球化学系统(模型地下水和磷酸盐玻璃浸出液)中,对于某些元素(铋、钼、铯),可以使用统一的模型,即有效扩散系数作为影响这一过程的因素的函数:样品孔隙率、样品中的闪长岩含量和孔隙溶液中放射性核素(元素)的浓度;而对于硒和铀,不同地球化学系统的扩散模型是不同的。元素扩散行为的特异性与水溶液中这些元素颗粒的结构特征和物理化学特性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Method of Coupled Processes in Studying Diffusion of Radioactive Waste Elements in the Pore Solution of Clay Materials

A method of coupled processes was proposed to maintain concentrations in the model leachate of the radioactive waste phosphate matrix, which served as a source of elements in the study of through-diffusion of P, Se, Br, Mo, Cs, and U in the pore solution of compacted clay materials. The method consisted in adding an leachatable solid phase to the solution in the source chamber of the diffusion cell. The use of this method made it possible to stabilize the boundary conditions and expand the range of element concentrations in the source chamber of diffusion cells. The new as-obtained data on the effective diffusion coefficients of radioactive waste elements in clay rocks were used to refine the empirical models of diffusion transfer. It is shown that in different geochemical systems (model groundwater and phosphate glass leachate) for some elements (Br, Mo, Cs) it is possible to use unified models in the form of effective diffusion coefficients as a function of factors influencing this process: sample porosity, smectite content in the sample, and concentration of radionuclide (element) in pore solution, while for Se and U, diffusion models for various geochemical systems differ. The specificity of diffusion behavior of elements is associated with structural features and physicochemical properties of particles of these elements in aqueous solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiochemistry
Radiochemistry CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
1.30
自引率
33.30%
发文量
51
期刊介绍: Radiochemistry  is a journal that covers the theoretical and applied aspects of radiochemistry, including basic nuclear physical properties of radionuclides; chemistry of radioactive elements and their compounds; the occurrence and behavior of natural and artificial radionuclides in the environment; nuclear fuel cycle; radiochemical analysis methods and devices; production and isolation of radionuclides, synthesis of labeled compounds, new applications of radioactive tracers; radiochemical aspects of nuclear medicine; radiation chemistry and after-effects of nuclear transformations.
期刊最新文献
Crystal Structure of New Iodacetatouranylates R[UO2(CH2ICOO)3]2·2CH2ICOOH·4H2O (R = Sr or Ba) Uranium Sorption by Poly(hexamethylenesuccinamide) (PA46) as Cation-Exchange Resin from Wet-Process Egyptian Phosphoric Acid Evaluation of the Effect of External and Internal Irradiation on the Properties of Vitrified HLW to Substantiate the Safety of Their Environmental Impact Influence of Ionizıng Radiation on Physicochemical and Operational Properties of Diesel Fuel with Added Toluene Physicochemical Properties of Submicron 239Pu Aerosols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1