{"title":"利用激光冲击成形技术分析板材弯曲的机理","authors":"G. Zh. Sakhvadze, G. G. Sakhvadze","doi":"10.1134/S105261882309011X","DOIUrl":null,"url":null,"abstract":"<p>When using the novel innovative technology of laser shock forming, a laser shock wave causes a bending deformation of the plate. Simulation of the technology of laser shock forming by the finite element method has been carried out. The following two mechanisms of plate bending have been investigated: a stress-gradient bending mechanism and a stress-bending mechanism. It has been established that the actualization of a specific plate bending mechanism depends on the ratio between the main parameters of laser shock forming: the laser spot overlapping coefficient, the number of repetitive laser pulses, and the laser power density. Four different modes of plate bending have been studied, which differ from each other in the depth of the plastic deformation zone at the site of interaction between the laser radiation and the material. It is shown that the plate thickness is of decisive importance, too. The tensile force, the bending torque, and the curvature of the plate depending on the overlapping coefficient of laser spots have been obtained. The results obtained show that the curvature of the plate calculated with the use of the finite element method is in good agreement with the experimental data.</p>","PeriodicalId":642,"journal":{"name":"Journal of Machinery Manufacture and Reliability","volume":"52 1 supplement","pages":"S6 - S16"},"PeriodicalIF":0.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Mechanisms of Plate Bending Using a Laser Shock Forming Technology\",\"authors\":\"G. Zh. Sakhvadze, G. G. Sakhvadze\",\"doi\":\"10.1134/S105261882309011X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When using the novel innovative technology of laser shock forming, a laser shock wave causes a bending deformation of the plate. Simulation of the technology of laser shock forming by the finite element method has been carried out. The following two mechanisms of plate bending have been investigated: a stress-gradient bending mechanism and a stress-bending mechanism. It has been established that the actualization of a specific plate bending mechanism depends on the ratio between the main parameters of laser shock forming: the laser spot overlapping coefficient, the number of repetitive laser pulses, and the laser power density. Four different modes of plate bending have been studied, which differ from each other in the depth of the plastic deformation zone at the site of interaction between the laser radiation and the material. It is shown that the plate thickness is of decisive importance, too. The tensile force, the bending torque, and the curvature of the plate depending on the overlapping coefficient of laser spots have been obtained. The results obtained show that the curvature of the plate calculated with the use of the finite element method is in good agreement with the experimental data.</p>\",\"PeriodicalId\":642,\"journal\":{\"name\":\"Journal of Machinery Manufacture and Reliability\",\"volume\":\"52 1 supplement\",\"pages\":\"S6 - S16\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machinery Manufacture and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S105261882309011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machinery Manufacture and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S105261882309011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Analyzing the Mechanisms of Plate Bending Using a Laser Shock Forming Technology
When using the novel innovative technology of laser shock forming, a laser shock wave causes a bending deformation of the plate. Simulation of the technology of laser shock forming by the finite element method has been carried out. The following two mechanisms of plate bending have been investigated: a stress-gradient bending mechanism and a stress-bending mechanism. It has been established that the actualization of a specific plate bending mechanism depends on the ratio between the main parameters of laser shock forming: the laser spot overlapping coefficient, the number of repetitive laser pulses, and the laser power density. Four different modes of plate bending have been studied, which differ from each other in the depth of the plastic deformation zone at the site of interaction between the laser radiation and the material. It is shown that the plate thickness is of decisive importance, too. The tensile force, the bending torque, and the curvature of the plate depending on the overlapping coefficient of laser spots have been obtained. The results obtained show that the curvature of the plate calculated with the use of the finite element method is in good agreement with the experimental data.
期刊介绍:
Journal of Machinery Manufacture and Reliability is devoted to advances in machine design; CAD/CAM; experimental mechanics of machines, machine life expectancy, and reliability studies; machine dynamics and kinematics; vibration, acoustics, and stress/strain; wear resistance engineering; real-time machine operation diagnostics; robotic systems; new materials and manufacturing processes, and other topics.