通过与溶血素 III 类细菌素的催化结构域融合,高效生产和纯化具有生物活性的 E50-52 IIa 类多肽细菌素

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry (Moscow) Pub Date : 2024-10-09 DOI:10.1134/S0006297924090074
Nichakarn Phrutpoom, Tararat Khaokhiew, Aung Khine Linn, Somsri Sakdee, Chompounoot Imtong, Nujarin Jongruja, Chanan Angsuthanasombat
{"title":"通过与溶血素 III 类细菌素的催化结构域融合,高效生产和纯化具有生物活性的 E50-52 IIa 类多肽细菌素","authors":"Nichakarn Phrutpoom,&nbsp;Tararat Khaokhiew,&nbsp;Aung Khine Linn,&nbsp;Somsri Sakdee,&nbsp;Chompounoot Imtong,&nbsp;Nujarin Jongruja,&nbsp;Chanan Angsuthanasombat","doi":"10.1134/S0006297924090074","DOIUrl":null,"url":null,"abstract":"<p>E50-52, a class IIa-peptidic bacteriocin produced by a strain of <i>Enterococcus faecium</i>, has broad-spectrum antimicrobial activity against various foodborne pathogens. However, effective utilization of the E50-52 has been limited by low production yields and challenges associated with separation and purification of this 39-amino acid antimicrobial peptide. In this study, we have successfully produced a biologically active recombinant form of E50-52 by fusing it with the 16-kDa catalytic domain of lysostaphin-class III bacteriocin (LssCAT), which resulted in high-yield production. Initially, the LssCAT-E50-52 chimeric protein was insoluble upon over-expression in <i>Escherichia coli</i>, but it became soluble using phosphate buffer (pH 7.4) supplemented with 8 M urea. Purification using immobilized-Ni<sup>2+</sup> affinity chromatography under urea denaturing conditions resulted in consistent production a homogenous products (LssCAT-E50-52) with &gt;95% purity. The purified protein was refolded using an optimized stepwise dialysis process. The resulting refolded LssCAT-E50-52 protein exhibited dose-dependent inhibitory activity against <i>Helicobacter pylori</i>, a Gram-negative, flagellated, helical bacterium that is associated with gastric cancer. Overall, the optimized protocol described in this study effectively produced large quantities of high-purity recombinant LssCAT-E50-52 protein, yielding approximately 100 mg per liter of culture. To the best of our knowledge, this is the first report on the impact of LssCAT-E50-52 on <i>H. pylori</i>. This finding could pave the way for further research into bactericidal mechanism and potential applications of this bacteriocin in biomedical industry.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 9","pages":"1610 - 1618"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Production and Purification of Bioactive E50-52-Class IIa Peptidic Bacteriocin Is Achieved through Fusion with the Catalytic Domain of Lysostaphin-Class III Bacteriocin\",\"authors\":\"Nichakarn Phrutpoom,&nbsp;Tararat Khaokhiew,&nbsp;Aung Khine Linn,&nbsp;Somsri Sakdee,&nbsp;Chompounoot Imtong,&nbsp;Nujarin Jongruja,&nbsp;Chanan Angsuthanasombat\",\"doi\":\"10.1134/S0006297924090074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>E50-52, a class IIa-peptidic bacteriocin produced by a strain of <i>Enterococcus faecium</i>, has broad-spectrum antimicrobial activity against various foodborne pathogens. However, effective utilization of the E50-52 has been limited by low production yields and challenges associated with separation and purification of this 39-amino acid antimicrobial peptide. In this study, we have successfully produced a biologically active recombinant form of E50-52 by fusing it with the 16-kDa catalytic domain of lysostaphin-class III bacteriocin (LssCAT), which resulted in high-yield production. Initially, the LssCAT-E50-52 chimeric protein was insoluble upon over-expression in <i>Escherichia coli</i>, but it became soluble using phosphate buffer (pH 7.4) supplemented with 8 M urea. Purification using immobilized-Ni<sup>2+</sup> affinity chromatography under urea denaturing conditions resulted in consistent production a homogenous products (LssCAT-E50-52) with &gt;95% purity. The purified protein was refolded using an optimized stepwise dialysis process. The resulting refolded LssCAT-E50-52 protein exhibited dose-dependent inhibitory activity against <i>Helicobacter pylori</i>, a Gram-negative, flagellated, helical bacterium that is associated with gastric cancer. Overall, the optimized protocol described in this study effectively produced large quantities of high-purity recombinant LssCAT-E50-52 protein, yielding approximately 100 mg per liter of culture. To the best of our knowledge, this is the first report on the impact of LssCAT-E50-52 on <i>H. pylori</i>. This finding could pave the way for further research into bactericidal mechanism and potential applications of this bacteriocin in biomedical industry.</p>\",\"PeriodicalId\":483,\"journal\":{\"name\":\"Biochemistry (Moscow)\",\"volume\":\"89 9\",\"pages\":\"1610 - 1618\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow)\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0006297924090074\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow)","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0006297924090074","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

E50-52 是一种由粪肠球菌菌株产生的 IIa 类多肽细菌素,对各种食源性病原体具有广谱抗菌活性。然而,E50-52 的有效利用一直受限于低产量以及与分离和纯化这种 39 氨基酸抗菌肽相关的挑战。在这项研究中,我们通过将 E50-52 与溶菌酶 III 类细菌素(LssCAT)的 16 kDa 催化结构域融合,成功地生产出了具有生物活性的 E50-52 重组形式,从而实现了高产。最初,LssCAT-E50-52 嵌合蛋白在大肠杆菌中过度表达时是不溶解的,但使用磷酸盐缓冲液(pH7.4)并辅以 8 M 尿素后就变得可溶了。在尿素变性条件下,使用固定化-Ni2+亲和层析法进行纯化,可得到纯度为 95% 的均质产物(LssCAT-E50-52)。纯化后的蛋白质采用优化的分步透析工艺重新折叠。重折叠后的 LssCAT-E50-52 蛋白对幽门螺旋杆菌具有剂量依赖性抑制活性,幽门螺旋杆菌是一种革兰氏阴性、鞭毛螺旋菌,与胃癌有关。总之,本研究中描述的优化方案有效地生产了大量高纯度重组 LssCAT-E50-52 蛋白,每升培养物可产生约 100 毫克。据我们所知,这是首次报道 LssCAT-E50-52 对幽门螺杆菌的影响。这一发现为进一步研究这种细菌素的杀菌机制和在生物医学领域的潜在应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Production and Purification of Bioactive E50-52-Class IIa Peptidic Bacteriocin Is Achieved through Fusion with the Catalytic Domain of Lysostaphin-Class III Bacteriocin

E50-52, a class IIa-peptidic bacteriocin produced by a strain of Enterococcus faecium, has broad-spectrum antimicrobial activity against various foodborne pathogens. However, effective utilization of the E50-52 has been limited by low production yields and challenges associated with separation and purification of this 39-amino acid antimicrobial peptide. In this study, we have successfully produced a biologically active recombinant form of E50-52 by fusing it with the 16-kDa catalytic domain of lysostaphin-class III bacteriocin (LssCAT), which resulted in high-yield production. Initially, the LssCAT-E50-52 chimeric protein was insoluble upon over-expression in Escherichia coli, but it became soluble using phosphate buffer (pH 7.4) supplemented with 8 M urea. Purification using immobilized-Ni2+ affinity chromatography under urea denaturing conditions resulted in consistent production a homogenous products (LssCAT-E50-52) with >95% purity. The purified protein was refolded using an optimized stepwise dialysis process. The resulting refolded LssCAT-E50-52 protein exhibited dose-dependent inhibitory activity against Helicobacter pylori, a Gram-negative, flagellated, helical bacterium that is associated with gastric cancer. Overall, the optimized protocol described in this study effectively produced large quantities of high-purity recombinant LssCAT-E50-52 protein, yielding approximately 100 mg per liter of culture. To the best of our knowledge, this is the first report on the impact of LssCAT-E50-52 on H. pylori. This finding could pave the way for further research into bactericidal mechanism and potential applications of this bacteriocin in biomedical industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry (Moscow)
Biochemistry (Moscow) 生物-生化与分子生物学
CiteScore
4.70
自引率
3.60%
发文量
139
审稿时长
2 months
期刊介绍: Biochemistry (Moscow) is the journal that includes research papers in all fields of biochemistry as well as biochemical aspects of molecular biology, bioorganic chemistry, microbiology, immunology, physiology, and biomedical sciences. Coverage also extends to new experimental methods in biochemistry, theoretical contributions of biochemical importance, reviews of contemporary biochemical topics, and mini-reviews (News in Biochemistry).
期刊最新文献
Role of Filamin C in Muscle Cells The Effect of Chronic Overcrowding on Social Behavior and Expression of Neuroinflammation-Associated Genes in Rats Efficient Production and Purification of Bioactive E50-52-Class IIa Peptidic Bacteriocin Is Achieved through Fusion with the Catalytic Domain of Lysostaphin-Class III Bacteriocin A New Approach for Studying Poly(ADP-Ribose) Polymerase Inhibitors Using Permeabilized Adherent Cells Erratum to: Pharmacological Doses of Thiamine Benefit Patients with the Charcot–Marie–Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1