{"title":"分形伪微分算子的谱理论","authors":"Hans Triebel","doi":"10.1007/s43036-024-00381-2","DOIUrl":null,"url":null,"abstract":"<div><p>The paper deals with the distribution of eigenvalues of the compact fractal pseudodifferential operator <span>\\(T^\\mu _\\tau \\)</span>, </p><div><div><span>$$\\begin{aligned} \\big ( T^\\mu _\\tau f\\big )(x) = \\int _{{{\\mathbb {R}}}^n} e^{-ix\\xi } \\, \\tau (x,\\xi ) \\, \\big ( f\\mu \\big )^\\vee (\\xi ) \\, {\\mathrm d}\\xi , \\qquad x\\in {{\\mathbb {R}}}^n, \\end{aligned}$$</span></div></div><p>in suitable special Besov spaces <span>\\(B^s_p ({{\\mathbb {R}}}^n) = B^s_{p,p} ({{\\mathbb {R}}}^n)\\)</span>, <span>\\(s>0\\)</span>, <span>\\(1<p<\\infty \\)</span>. Here <span>\\(\\tau (x,\\xi )\\)</span> are the symbols of (smooth) pseudodifferential operators belonging to appropriate Hörmander classes <span>\\(\\Psi ^\\sigma _{1, \\delta } ({{\\mathbb {R}}}^n)\\)</span>, <span>\\(\\sigma <0\\)</span>, <span>\\(0 \\le \\delta \\le 1\\)</span> (including the exotic case <span>\\(\\delta =1\\)</span>) whereas <span>\\(\\mu \\)</span> is the Hausdorff measure of a compact <i>d</i>–set <span>\\(\\Gamma \\)</span> in <span>\\({{\\mathbb {R}}}^n\\)</span>, <span>\\(0<d<n\\)</span>. This extends previous assertions for the positive-definite selfadjoint fractal differential operator <span>\\((\\textrm{id}- \\Delta )^{\\sigma /2} \\mu \\)</span> based on Hilbert space arguments in the context of suitable Sobolev spaces <span>\\(H^s ({{\\mathbb {R}}}^n) = B^s_2 ({{\\mathbb {R}}}^n)\\)</span>. We collect the outcome in the <b>Main Theorem</b> below. Proofs are based on estimates for the entropy numbers of the compact trace operator </p><div><div><span>$$\\begin{aligned} \\textrm{tr}\\,_\\mu : \\quad B^s_p ({{\\mathbb {R}}}^n) \\hookrightarrow L_p (\\Gamma , \\mu ), \\quad s>0, \\quad 1<p<\\infty . \\end{aligned}$$</span></div></div><p>We add at the end of the paper a few personal reminiscences illuminating the role of Pietsch in connection with the creation of approximation numbers and entropy numbers.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00381-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Spectral theory for fractal pseudodifferential operators\",\"authors\":\"Hans Triebel\",\"doi\":\"10.1007/s43036-024-00381-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper deals with the distribution of eigenvalues of the compact fractal pseudodifferential operator <span>\\\\(T^\\\\mu _\\\\tau \\\\)</span>, </p><div><div><span>$$\\\\begin{aligned} \\\\big ( T^\\\\mu _\\\\tau f\\\\big )(x) = \\\\int _{{{\\\\mathbb {R}}}^n} e^{-ix\\\\xi } \\\\, \\\\tau (x,\\\\xi ) \\\\, \\\\big ( f\\\\mu \\\\big )^\\\\vee (\\\\xi ) \\\\, {\\\\mathrm d}\\\\xi , \\\\qquad x\\\\in {{\\\\mathbb {R}}}^n, \\\\end{aligned}$$</span></div></div><p>in suitable special Besov spaces <span>\\\\(B^s_p ({{\\\\mathbb {R}}}^n) = B^s_{p,p} ({{\\\\mathbb {R}}}^n)\\\\)</span>, <span>\\\\(s>0\\\\)</span>, <span>\\\\(1<p<\\\\infty \\\\)</span>. Here <span>\\\\(\\\\tau (x,\\\\xi )\\\\)</span> are the symbols of (smooth) pseudodifferential operators belonging to appropriate Hörmander classes <span>\\\\(\\\\Psi ^\\\\sigma _{1, \\\\delta } ({{\\\\mathbb {R}}}^n)\\\\)</span>, <span>\\\\(\\\\sigma <0\\\\)</span>, <span>\\\\(0 \\\\le \\\\delta \\\\le 1\\\\)</span> (including the exotic case <span>\\\\(\\\\delta =1\\\\)</span>) whereas <span>\\\\(\\\\mu \\\\)</span> is the Hausdorff measure of a compact <i>d</i>–set <span>\\\\(\\\\Gamma \\\\)</span> in <span>\\\\({{\\\\mathbb {R}}}^n\\\\)</span>, <span>\\\\(0<d<n\\\\)</span>. This extends previous assertions for the positive-definite selfadjoint fractal differential operator <span>\\\\((\\\\textrm{id}- \\\\Delta )^{\\\\sigma /2} \\\\mu \\\\)</span> based on Hilbert space arguments in the context of suitable Sobolev spaces <span>\\\\(H^s ({{\\\\mathbb {R}}}^n) = B^s_2 ({{\\\\mathbb {R}}}^n)\\\\)</span>. We collect the outcome in the <b>Main Theorem</b> below. Proofs are based on estimates for the entropy numbers of the compact trace operator </p><div><div><span>$$\\\\begin{aligned} \\\\textrm{tr}\\\\,_\\\\mu : \\\\quad B^s_p ({{\\\\mathbb {R}}}^n) \\\\hookrightarrow L_p (\\\\Gamma , \\\\mu ), \\\\quad s>0, \\\\quad 1<p<\\\\infty . \\\\end{aligned}$$</span></div></div><p>We add at the end of the paper a few personal reminiscences illuminating the role of Pietsch in connection with the creation of approximation numbers and entropy numbers.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-024-00381-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00381-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00381-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
in suitable special Besov spaces \(B^s_p ({{\mathbb {R}}}^n) = B^s_{p,p} ({{\mathbb {R}}}^n)\), \(s>0\), \(1<p<\infty \). Here \(\tau (x,\xi )\) are the symbols of (smooth) pseudodifferential operators belonging to appropriate Hörmander classes \(\Psi ^\sigma _{1, \delta } ({{\mathbb {R}}}^n)\), \(\sigma <0\), \(0 \le \delta \le 1\) (including the exotic case \(\delta =1\)) whereas \(\mu \) is the Hausdorff measure of a compact d–set \(\Gamma \) in \({{\mathbb {R}}}^n\), \(0<d<n\). This extends previous assertions for the positive-definite selfadjoint fractal differential operator \((\textrm{id}- \Delta )^{\sigma /2} \mu \) based on Hilbert space arguments in the context of suitable Sobolev spaces \(H^s ({{\mathbb {R}}}^n) = B^s_2 ({{\mathbb {R}}}^n)\). We collect the outcome in the Main Theorem below. Proofs are based on estimates for the entropy numbers of the compact trace operator
We add at the end of the paper a few personal reminiscences illuminating the role of Pietsch in connection with the creation of approximation numbers and entropy numbers.