Laiza Santos Dagnaisser, David Vilas Boas de Campos, Érika Flávia Machado Pinheiro, Dione Galvão da Silva, Jéssica Chaves Cardoso, Conan Ayade Salvador, Elisa Helena da Rocha Ferreira, Henrique Vieira de Mendonça
{"title":"将牛废水中培养的微藻作为生物肥料:芝麻菜(Eruca vesicaria)生产试验及其对可持续农业的益处","authors":"Laiza Santos Dagnaisser, David Vilas Boas de Campos, Érika Flávia Machado Pinheiro, Dione Galvão da Silva, Jéssica Chaves Cardoso, Conan Ayade Salvador, Elisa Helena da Rocha Ferreira, Henrique Vieira de Mendonça","doi":"10.1007/s11270-024-07519-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring food security for the world's growing population while advancing sustainable agriculture and reducing conventional fertilizer use is a major challenge. The objective of this research was to comparatively evaluate the effect of microalgae biomass biofertilizer, derived from the production of <i>Arthrospira platensis</i> DHR 20 (Spirulina) in cattle wastewater under organic management (CW), on the development of arugula. It also examined the microbiological attributes of arugula leaves and the changes in soil chemical properties and structural composition of the soil post-experiment. The experiment consisted of three treatments: T1 – control, with urea application; T2 – CW; T3 – microalgae biofertilizer. The experimental design was completely randomized with seven replications and four plants per plot. The main conclusion of this research is that microalgae biomass biofertilizer presents nutritional potential for arugula, particularly as a source of N (187.5 mg L<sup>−1</sup>) and K (92.9 mg L<sup>−1</sup>), and can replace conventional urea fertilizer as a nitrogen source in the cultivation of arugula, with similar plant development quality according to the Dickson Quality Index. According to the SAR, the microalgae biomass biofertilizer and CW do not present soil sodicity restrictions and show a low to moderate level of restriction for soil use in terms of salinity. The average biofixation rate of 0.22 CO<sub>2</sub> L<sup>−1</sup> d<sup>−1</sup> obtained in the study suggests that <i>Spirulina</i> cultivation in CW is suitable for this greenhouse gas biofixation. Leaves from the three treatment groups yielded negative results for the presence of thermotolerant coliforms. Both microalgae biofertilizer and CW acted as soil conditioners, improving its structural quality when compared to soil fertilized with urea.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microalgae Cultivated in Cattle Wastewater as a Biofertilizer: Tests on the Production of Arugula (Eruca vesicaria) and the Benefits for Sustainable Agriculture\",\"authors\":\"Laiza Santos Dagnaisser, David Vilas Boas de Campos, Érika Flávia Machado Pinheiro, Dione Galvão da Silva, Jéssica Chaves Cardoso, Conan Ayade Salvador, Elisa Helena da Rocha Ferreira, Henrique Vieira de Mendonça\",\"doi\":\"10.1007/s11270-024-07519-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ensuring food security for the world's growing population while advancing sustainable agriculture and reducing conventional fertilizer use is a major challenge. The objective of this research was to comparatively evaluate the effect of microalgae biomass biofertilizer, derived from the production of <i>Arthrospira platensis</i> DHR 20 (Spirulina) in cattle wastewater under organic management (CW), on the development of arugula. It also examined the microbiological attributes of arugula leaves and the changes in soil chemical properties and structural composition of the soil post-experiment. The experiment consisted of three treatments: T1 – control, with urea application; T2 – CW; T3 – microalgae biofertilizer. The experimental design was completely randomized with seven replications and four plants per plot. The main conclusion of this research is that microalgae biomass biofertilizer presents nutritional potential for arugula, particularly as a source of N (187.5 mg L<sup>−1</sup>) and K (92.9 mg L<sup>−1</sup>), and can replace conventional urea fertilizer as a nitrogen source in the cultivation of arugula, with similar plant development quality according to the Dickson Quality Index. According to the SAR, the microalgae biomass biofertilizer and CW do not present soil sodicity restrictions and show a low to moderate level of restriction for soil use in terms of salinity. The average biofixation rate of 0.22 CO<sub>2</sub> L<sup>−1</sup> d<sup>−1</sup> obtained in the study suggests that <i>Spirulina</i> cultivation in CW is suitable for this greenhouse gas biofixation. Leaves from the three treatment groups yielded negative results for the presence of thermotolerant coliforms. Both microalgae biofertilizer and CW acted as soil conditioners, improving its structural quality when compared to soil fertilized with urea.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"235 11\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07519-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07519-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microalgae Cultivated in Cattle Wastewater as a Biofertilizer: Tests on the Production of Arugula (Eruca vesicaria) and the Benefits for Sustainable Agriculture
Ensuring food security for the world's growing population while advancing sustainable agriculture and reducing conventional fertilizer use is a major challenge. The objective of this research was to comparatively evaluate the effect of microalgae biomass biofertilizer, derived from the production of Arthrospira platensis DHR 20 (Spirulina) in cattle wastewater under organic management (CW), on the development of arugula. It also examined the microbiological attributes of arugula leaves and the changes in soil chemical properties and structural composition of the soil post-experiment. The experiment consisted of three treatments: T1 – control, with urea application; T2 – CW; T3 – microalgae biofertilizer. The experimental design was completely randomized with seven replications and four plants per plot. The main conclusion of this research is that microalgae biomass biofertilizer presents nutritional potential for arugula, particularly as a source of N (187.5 mg L−1) and K (92.9 mg L−1), and can replace conventional urea fertilizer as a nitrogen source in the cultivation of arugula, with similar plant development quality according to the Dickson Quality Index. According to the SAR, the microalgae biomass biofertilizer and CW do not present soil sodicity restrictions and show a low to moderate level of restriction for soil use in terms of salinity. The average biofixation rate of 0.22 CO2 L−1 d−1 obtained in the study suggests that Spirulina cultivation in CW is suitable for this greenhouse gas biofixation. Leaves from the three treatment groups yielded negative results for the presence of thermotolerant coliforms. Both microalgae biofertilizer and CW acted as soil conditioners, improving its structural quality when compared to soil fertilized with urea.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.