Bi2WO6中的能量转移:O2和ROS传感中的ERedOx辅助辐射重组。 展望

IF 2.2 4区 化学 Q2 Engineering Chemical Papers Pub Date : 2024-09-19 DOI:10.1007/s11696-024-03692-z
Oswaldo Núñez, Lorean Madriz, Ronald Vargas
{"title":"Bi2WO6中的能量转移:O2和ROS传感中的ERedOx辅助辐射重组。 展望","authors":"Oswaldo Núñez,&nbsp;Lorean Madriz,&nbsp;Ronald Vargas","doi":"10.1007/s11696-024-03692-z","DOIUrl":null,"url":null,"abstract":"<div><p>Photoluminescence maximum emission signal of colloids based on Bi<sub>2</sub>WO<sub>6</sub> suspended in an aqueous solution is blue-shifted as compared to its band gap according to E<sub>g +</sub> (E<sub>RedOx</sub>-E<sub>CB</sub>). This process involves the exergonic non-radiative transfer of E<sub>CB</sub> electron to E<sub>RedOx</sub> and the concomitant radiative emission of a second electron that has gained E<sub>RedOx</sub>-E<sub>CB</sub> energy presumably by electrons energy levels entanglement induced via simultaneous light excitement of multiple electrons. These results constitute evidence for energy transfer with application in sensing electrolyte-electron-acceptors as reactive oxygen species that may be implemented for example in cancer and aortic dissection detection and treatment.</p><h3>Graphical abstract</h3><p>Bi<sub>2</sub>WO<sub>6</sub> electrons from water colloidal solution are entangled by light (Plasmon resonance) and excited from the Bi<sub>2</sub>WO<sub>6</sub> valence band (VB) to its conduction band (CB). Electron 1 moves up the gradient at the surface and is transferred to the acceptor (E<sub>RedOx</sub>) at the electrolyte. The gained energy, E<sub>RedOx</sub>—E<sub>Cb</sub>, is transferred to electron 2 via their entangled energy levels. Electron 2 then decays to the VB emitting light at the Bi<sub>2</sub>WO<sub>6</sub> band gap (E<sub>g</sub>) plus the energy gained. Sensing of the E<sub>RedOx</sub> and [RedOx] is then obtained.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the energy transfer in Bi2WO6: ERedOx-assisted radiative recombination in O2 and ROS sensing. prospective\",\"authors\":\"Oswaldo Núñez,&nbsp;Lorean Madriz,&nbsp;Ronald Vargas\",\"doi\":\"10.1007/s11696-024-03692-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photoluminescence maximum emission signal of colloids based on Bi<sub>2</sub>WO<sub>6</sub> suspended in an aqueous solution is blue-shifted as compared to its band gap according to E<sub>g +</sub> (E<sub>RedOx</sub>-E<sub>CB</sub>). This process involves the exergonic non-radiative transfer of E<sub>CB</sub> electron to E<sub>RedOx</sub> and the concomitant radiative emission of a second electron that has gained E<sub>RedOx</sub>-E<sub>CB</sub> energy presumably by electrons energy levels entanglement induced via simultaneous light excitement of multiple electrons. These results constitute evidence for energy transfer with application in sensing electrolyte-electron-acceptors as reactive oxygen species that may be implemented for example in cancer and aortic dissection detection and treatment.</p><h3>Graphical abstract</h3><p>Bi<sub>2</sub>WO<sub>6</sub> electrons from water colloidal solution are entangled by light (Plasmon resonance) and excited from the Bi<sub>2</sub>WO<sub>6</sub> valence band (VB) to its conduction band (CB). Electron 1 moves up the gradient at the surface and is transferred to the acceptor (E<sub>RedOx</sub>) at the electrolyte. The gained energy, E<sub>RedOx</sub>—E<sub>Cb</sub>, is transferred to electron 2 via their entangled energy levels. Electron 2 then decays to the VB emitting light at the Bi<sub>2</sub>WO<sub>6</sub> band gap (E<sub>g</sub>) plus the energy gained. Sensing of the E<sub>RedOx</sub> and [RedOx] is then obtained.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":513,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-024-03692-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03692-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

根据 Eg + (ERedOx-ECB),悬浮在水溶液中的基于 Bi2WO6 的胶体的光致发光最大发射信号与其带隙相比发生蓝移。这一过程涉及 ECB 电子向 ERedOx 的非辐射性外转移,以及获得 ERedOx-ECB 能量的第二个电子的辐射性发射,这可能是由于多个电子同时受到光激发而引起的电子能级纠缠。这些结果构成了能量转移的证据,可应用于电解质电子受体作为活性氧物种的感应,例如癌症和主动脉夹层的检测和治疗。图解摘要来自水胶体溶液的 Bi2WO6 电子被光纠缠(等离子共振),并从 Bi2WO6 价带 (VB) 激发到其导带 (CB)。电子 1 在表面沿着梯度向上移动,并转移到电解质中的受体(ERedOx)。获得的能量 ERedOx-ECb 通过它们的纠缠能级转移到电子 2。然后,电子 2 在 Bi2WO6 带隙 (Eg) 加上获得的能量衰减为 VB 发光。然后就能感应 ERedOx 和 [RedOx]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the energy transfer in Bi2WO6: ERedOx-assisted radiative recombination in O2 and ROS sensing. prospective

Photoluminescence maximum emission signal of colloids based on Bi2WO6 suspended in an aqueous solution is blue-shifted as compared to its band gap according to Eg + (ERedOx-ECB). This process involves the exergonic non-radiative transfer of ECB electron to ERedOx and the concomitant radiative emission of a second electron that has gained ERedOx-ECB energy presumably by electrons energy levels entanglement induced via simultaneous light excitement of multiple electrons. These results constitute evidence for energy transfer with application in sensing electrolyte-electron-acceptors as reactive oxygen species that may be implemented for example in cancer and aortic dissection detection and treatment.

Graphical abstract

Bi2WO6 electrons from water colloidal solution are entangled by light (Plasmon resonance) and excited from the Bi2WO6 valence band (VB) to its conduction band (CB). Electron 1 moves up the gradient at the surface and is transferred to the acceptor (ERedOx) at the electrolyte. The gained energy, ERedOx—ECb, is transferred to electron 2 via their entangled energy levels. Electron 2 then decays to the VB emitting light at the Bi2WO6 band gap (Eg) plus the energy gained. Sensing of the ERedOx and [RedOx] is then obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
期刊最新文献
Chalky limestone as sustainable water purification from eriochrome black T: kinetics, isotherm, and equilibrium O-Allyloxy chalcone derivatives: design, synthesis, anticancer activity, network pharmacology and molecular docking Natural and synthetic polymers as effective corrosion inhibitors: a concise review Development of molecularly imprinted polymer-based dispersive micro-solid-phase extraction for the selective extraction of histamine from canned tuna fish samples prior to its determination by GC–FID Virtual screening, docking, molecular dynamics study of efflux pump inhibitors against Helicobacter pylori
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1