{"title":"太阳活动周期 24 中与活动区有关的活动事件在线目录","authors":"Tsvetan Tsvetkov, Yoana Nakeva, Nikola Petrov","doi":"10.1007/s11207-024-02351-6","DOIUrl":null,"url":null,"abstract":"<div><p>We present a statistical study on the relationship of solar dynamic events (solar flares and coronal mass ejections) with active regions during Solar Cycle 24 (December 2008–December 2019). Combining data from NOAA Space Weather Prediction Center and observations of Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft, we found that more than a half of the coronal mass ejections were generated inside active regions. Geostationary Operational Environmental Satellite (GOES) soft X-ray flare listing data completed our study showing that almost 83% of Solar Cycle 24 flares are connected with active regions. Finally, we summarize the details for the related phenomena into an online catalog based on a list of all 1533 active regions that produced at least one flare and/or coronal mass ejection during Solar Cycle 24 and explore their properties like flare class, coronal mass ejection speed, and angular width paying special attention to the most powerful and threatful to Earth solar events.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Catalog of Activity Events of Solar Cycle 24 Related to Active Regions\",\"authors\":\"Tsvetan Tsvetkov, Yoana Nakeva, Nikola Petrov\",\"doi\":\"10.1007/s11207-024-02351-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a statistical study on the relationship of solar dynamic events (solar flares and coronal mass ejections) with active regions during Solar Cycle 24 (December 2008–December 2019). Combining data from NOAA Space Weather Prediction Center and observations of Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft, we found that more than a half of the coronal mass ejections were generated inside active regions. Geostationary Operational Environmental Satellite (GOES) soft X-ray flare listing data completed our study showing that almost 83% of Solar Cycle 24 flares are connected with active regions. Finally, we summarize the details for the related phenomena into an online catalog based on a list of all 1533 active regions that produced at least one flare and/or coronal mass ejection during Solar Cycle 24 and explore their properties like flare class, coronal mass ejection speed, and angular width paying special attention to the most powerful and threatful to Earth solar events.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02351-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02351-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍了太阳动力学事件(太阳耀斑和日冕物质抛射)与太阳周期24(2008年12月至2019年12月)期间活动区域关系的统计研究。结合美国国家海洋和大气管理局(NOAA)空间天气预报中心的数据以及太阳和日光层观测站(SOHO)航天器上的大角度和分光日冕仪(LASCO)的观测数据,我们发现超过一半的日冕物质抛射是在活动区域内产生的。地球静止业务环境卫星(GOES)的软 X 射线耀斑列表数据完成了我们的研究,显示太阳周期 24 几乎 83% 的耀斑与活动区有关。最后,我们在太阳周期24期间至少产生过一次耀斑和/或日冕物质抛射的所有1533个活动区列表的基础上,将相关现象的详细信息汇总到一个在线目录中,并探讨了它们的特性,如耀斑等级、日冕物质抛射速度和角宽度,特别关注了最强大和对地球威胁最大的太阳活动。
Online Catalog of Activity Events of Solar Cycle 24 Related to Active Regions
We present a statistical study on the relationship of solar dynamic events (solar flares and coronal mass ejections) with active regions during Solar Cycle 24 (December 2008–December 2019). Combining data from NOAA Space Weather Prediction Center and observations of Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft, we found that more than a half of the coronal mass ejections were generated inside active regions. Geostationary Operational Environmental Satellite (GOES) soft X-ray flare listing data completed our study showing that almost 83% of Solar Cycle 24 flares are connected with active regions. Finally, we summarize the details for the related phenomena into an online catalog based on a list of all 1533 active regions that produced at least one flare and/or coronal mass ejection during Solar Cycle 24 and explore their properties like flare class, coronal mass ejection speed, and angular width paying special attention to the most powerful and threatful to Earth solar events.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.