Yu. A. Abzaev, V. I. Kolesnikov, M. S. Syrtanov, A. D. Svyazhin, L. V. Guda
{"title":"高熵铬锰铁钴镍铜合金的结构与稳定性","authors":"Yu. A. Abzaev, V. I. Kolesnikov, M. S. Syrtanov, A. D. Svyazhin, L. V. Guda","doi":"10.1007/s11182-024-03257-3","DOIUrl":null,"url":null,"abstract":"<p>In this work, the structure of a CrMnFeCoNiCu high-entropy alloy (HEA) film deposited by magnetron evaporation on a steel substrate is studied. It is established that the phase content of the CrMnFeCoNiCu HEAs is determined by a superposition of contributions from equiatomic simple cubic lattices of the CrMnFeCoNiCu composition (Struct-26 and Struct-278) with space group P1. It is found that the contributions of the diffraction patterns from the reference lattices to the integral intensity are 0.66 and 0.29, respectively. For simple cubic lattices Struct-26 and Struct-278, the full structural information (the lattice parameters, coordinates of atoms, spatial groups, and occupancies) is derived. It is established that the CrMnFeCoNiCu HEA is a stable compound, which is confirmed by calculations of the mixing energy for the convex Hull model.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 9","pages":"1379 - 1384"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and Stability of High Entropy CrMnFeCoNiCu Alloy\",\"authors\":\"Yu. A. Abzaev, V. I. Kolesnikov, M. S. Syrtanov, A. D. Svyazhin, L. V. Guda\",\"doi\":\"10.1007/s11182-024-03257-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the structure of a CrMnFeCoNiCu high-entropy alloy (HEA) film deposited by magnetron evaporation on a steel substrate is studied. It is established that the phase content of the CrMnFeCoNiCu HEAs is determined by a superposition of contributions from equiatomic simple cubic lattices of the CrMnFeCoNiCu composition (Struct-26 and Struct-278) with space group P1. It is found that the contributions of the diffraction patterns from the reference lattices to the integral intensity are 0.66 and 0.29, respectively. For simple cubic lattices Struct-26 and Struct-278, the full structural information (the lattice parameters, coordinates of atoms, spatial groups, and occupancies) is derived. It is established that the CrMnFeCoNiCu HEA is a stable compound, which is confirmed by calculations of the mixing energy for the convex Hull model.</p>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"67 9\",\"pages\":\"1379 - 1384\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-024-03257-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03257-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure and Stability of High Entropy CrMnFeCoNiCu Alloy
In this work, the structure of a CrMnFeCoNiCu high-entropy alloy (HEA) film deposited by magnetron evaporation on a steel substrate is studied. It is established that the phase content of the CrMnFeCoNiCu HEAs is determined by a superposition of contributions from equiatomic simple cubic lattices of the CrMnFeCoNiCu composition (Struct-26 and Struct-278) with space group P1. It is found that the contributions of the diffraction patterns from the reference lattices to the integral intensity are 0.66 and 0.29, respectively. For simple cubic lattices Struct-26 and Struct-278, the full structural information (the lattice parameters, coordinates of atoms, spatial groups, and occupancies) is derived. It is established that the CrMnFeCoNiCu HEA is a stable compound, which is confirmed by calculations of the mixing energy for the convex Hull model.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.