Ki Hwan Koh, Dong Ju Lee, Anthony Mu, Kangwoon Kim, Taehee Kim, Zheng Chen
{"title":"镀锂过程中的微结构演变及其对日历存储寿命的影响","authors":"Ki Hwan Koh, Dong Ju Lee, Anthony Mu, Kangwoon Kim, Taehee Kim, Zheng Chen","doi":"10.1007/s12274-024-6907-z","DOIUrl":null,"url":null,"abstract":"<div><p>The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities, spotlighting Li metal anodes as potential successors to traditional Li-ion batteries (LIBs). Achieving longer calendar aging life for Li metal anodes is crucial for their practical use, given their propensity for corrosion due to a low redox potential, which leads to compromised cycling stability and significant capacity loss during storage. Recent research investigated that this susceptibility is mainly dependent on the surface area of Li metal anode and the properties of the solid electrolyte interphase (SEI), particularly its stability and growth rate. Our research adds to this understanding by demonstrating that the amount of Li plating is a key factor in its corrosion during open-circuit storage, as assessed across various electrolytes. We discovered that increasing the Li plating amount effectively reduces Coulombic efficiency (C.E.) loss during aging, due to a lower surface area-to-Li ratio. This implies that the choice of electrolyte for optimal storage life should consider the amount of Li plating, with higher capacities promoting better storage characteristics.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 10","pages":"8834 - 8841"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural evolution in lithium plating process and its effect on the calendar storage life\",\"authors\":\"Ki Hwan Koh, Dong Ju Lee, Anthony Mu, Kangwoon Kim, Taehee Kim, Zheng Chen\",\"doi\":\"10.1007/s12274-024-6907-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities, spotlighting Li metal anodes as potential successors to traditional Li-ion batteries (LIBs). Achieving longer calendar aging life for Li metal anodes is crucial for their practical use, given their propensity for corrosion due to a low redox potential, which leads to compromised cycling stability and significant capacity loss during storage. Recent research investigated that this susceptibility is mainly dependent on the surface area of Li metal anode and the properties of the solid electrolyte interphase (SEI), particularly its stability and growth rate. Our research adds to this understanding by demonstrating that the amount of Li plating is a key factor in its corrosion during open-circuit storage, as assessed across various electrolytes. We discovered that increasing the Li plating amount effectively reduces Coulombic efficiency (C.E.) loss during aging, due to a lower surface area-to-Li ratio. This implies that the choice of electrolyte for optimal storage life should consider the amount of Li plating, with higher capacities promoting better storage characteristics.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 10\",\"pages\":\"8834 - 8841\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6907-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6907-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Microstructural evolution in lithium plating process and its effect on the calendar storage life
The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities, spotlighting Li metal anodes as potential successors to traditional Li-ion batteries (LIBs). Achieving longer calendar aging life for Li metal anodes is crucial for their practical use, given their propensity for corrosion due to a low redox potential, which leads to compromised cycling stability and significant capacity loss during storage. Recent research investigated that this susceptibility is mainly dependent on the surface area of Li metal anode and the properties of the solid electrolyte interphase (SEI), particularly its stability and growth rate. Our research adds to this understanding by demonstrating that the amount of Li plating is a key factor in its corrosion during open-circuit storage, as assessed across various electrolytes. We discovered that increasing the Li plating amount effectively reduces Coulombic efficiency (C.E.) loss during aging, due to a lower surface area-to-Li ratio. This implies that the choice of electrolyte for optimal storage life should consider the amount of Li plating, with higher capacities promoting better storage characteristics.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.