Ravishankar Sugumar, Haritha Venugopal, Sanket Sen, Gaurav Rajput, M. Krishnamurthy, Ram Gopal, Vandana Sharma
{"title":"用于研究强激光等离子体相互作用产生的电子发射的聚焦粒子流","authors":"Ravishankar Sugumar, Haritha Venugopal, Sanket Sen, Gaurav Rajput, M. Krishnamurthy, Ram Gopal, Vandana Sharma","doi":"10.1007/s00340-024-08324-8","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new utilization of an Aerodynamic Lens Stack (ALS) for concentrating aerosols in the production of high energy (>200 keV) electrons through their interaction with intense(<span>\\(>10^{16}\\)</span> W/cm<span>\\(^2\\)</span>), ultra-short (30 fs) laser pulses. The lens was designed and simulated in COMSOL with various parameters such as inlet dimensions and backing pressures. Subsequently, the particle jet was analyzed using particle streak velocimetry (PSV). Following the characterization process, the jet was exposed to the laser, and the emission of electrons was investigated and described. Our results demonstrate the effectiveness of the lens in producing and focussing aerosols originating from liquid sources, underscoring its potential as a precise microtarget for laser interactions.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"130 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Focused particle streams for electron emission studies from intense laser-plasma interactions\",\"authors\":\"Ravishankar Sugumar, Haritha Venugopal, Sanket Sen, Gaurav Rajput, M. Krishnamurthy, Ram Gopal, Vandana Sharma\",\"doi\":\"10.1007/s00340-024-08324-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a new utilization of an Aerodynamic Lens Stack (ALS) for concentrating aerosols in the production of high energy (>200 keV) electrons through their interaction with intense(<span>\\\\(>10^{16}\\\\)</span> W/cm<span>\\\\(^2\\\\)</span>), ultra-short (30 fs) laser pulses. The lens was designed and simulated in COMSOL with various parameters such as inlet dimensions and backing pressures. Subsequently, the particle jet was analyzed using particle streak velocimetry (PSV). Following the characterization process, the jet was exposed to the laser, and the emission of electrons was investigated and described. Our results demonstrate the effectiveness of the lens in producing and focussing aerosols originating from liquid sources, underscoring its potential as a precise microtarget for laser interactions.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-024-08324-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08324-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Focused particle streams for electron emission studies from intense laser-plasma interactions
We introduce a new utilization of an Aerodynamic Lens Stack (ALS) for concentrating aerosols in the production of high energy (>200 keV) electrons through their interaction with intense(\(>10^{16}\) W/cm\(^2\)), ultra-short (30 fs) laser pulses. The lens was designed and simulated in COMSOL with various parameters such as inlet dimensions and backing pressures. Subsequently, the particle jet was analyzed using particle streak velocimetry (PSV). Following the characterization process, the jet was exposed to the laser, and the emission of electrons was investigated and described. Our results demonstrate the effectiveness of the lens in producing and focussing aerosols originating from liquid sources, underscoring its potential as a precise microtarget for laser interactions.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.