{"title":"固态窄带和宽带功率放大器综述","authors":"Ahtisham Urooj, Muneer Ahmed Al Absi","doi":"10.1007/s13369-024-09452-1","DOIUrl":null,"url":null,"abstract":"<div><p>This review paper examines the advancements in solid-state power amplifiers (SSPAs) for wireless communication technology. As mobile devices rely on efficient power amplifiers to maintain battery life and ensure clear signal transmission, fabrication technologies like complementary metal–oxide–semiconductor (CMOS) and gallium nitride (GaN) are revolutionizing power amplifier (PA) design. The choice of material depends on the working frequency, with gallium arsenide (GaAs) and GaN suitable for frequencies under 100 GHz, and indium phosphide reaching up to 500 GHz. However, cost is a crucial factor in industrial manufacturing, making CMOS technology advantageous for on-chip system integration. Millimeter-wave chips have different requirements based on their application scenarios. In the Ka-band (26.5–40 GHz), high-power GaN and GaAs chips are preferred for satellite and long-distance communication. In contrast, the 60 GHz band is suited for short-distance high-speed communication and consumer electronics, making lower-cost CMOS and germanium silicon devices the preferred choice. This paper explores critical design considerations for SSPAs, focusing on common structures like envelope tracking, Doherty amplifiers, envelope elimination and restoration, and various linearization methods. We provide a clear comparison of their strengths and weaknesses to empower readers to select the optimal SSPA structure for their needs. Our review aims to facilitate informed decisions in the development of efficient and cost-effective SSPAs for advancing wireless communication technology.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on Solid-State Narrow and Wide-Band Power Amplifier\",\"authors\":\"Ahtisham Urooj, Muneer Ahmed Al Absi\",\"doi\":\"10.1007/s13369-024-09452-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review paper examines the advancements in solid-state power amplifiers (SSPAs) for wireless communication technology. As mobile devices rely on efficient power amplifiers to maintain battery life and ensure clear signal transmission, fabrication technologies like complementary metal–oxide–semiconductor (CMOS) and gallium nitride (GaN) are revolutionizing power amplifier (PA) design. The choice of material depends on the working frequency, with gallium arsenide (GaAs) and GaN suitable for frequencies under 100 GHz, and indium phosphide reaching up to 500 GHz. However, cost is a crucial factor in industrial manufacturing, making CMOS technology advantageous for on-chip system integration. Millimeter-wave chips have different requirements based on their application scenarios. In the Ka-band (26.5–40 GHz), high-power GaN and GaAs chips are preferred for satellite and long-distance communication. In contrast, the 60 GHz band is suited for short-distance high-speed communication and consumer electronics, making lower-cost CMOS and germanium silicon devices the preferred choice. This paper explores critical design considerations for SSPAs, focusing on common structures like envelope tracking, Doherty amplifiers, envelope elimination and restoration, and various linearization methods. We provide a clear comparison of their strengths and weaknesses to empower readers to select the optimal SSPA structure for their needs. Our review aims to facilitate informed decisions in the development of efficient and cost-effective SSPAs for advancing wireless communication technology.</p></div>\",\"PeriodicalId\":54354,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13369-024-09452-1\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09452-1","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Review on Solid-State Narrow and Wide-Band Power Amplifier
This review paper examines the advancements in solid-state power amplifiers (SSPAs) for wireless communication technology. As mobile devices rely on efficient power amplifiers to maintain battery life and ensure clear signal transmission, fabrication technologies like complementary metal–oxide–semiconductor (CMOS) and gallium nitride (GaN) are revolutionizing power amplifier (PA) design. The choice of material depends on the working frequency, with gallium arsenide (GaAs) and GaN suitable for frequencies under 100 GHz, and indium phosphide reaching up to 500 GHz. However, cost is a crucial factor in industrial manufacturing, making CMOS technology advantageous for on-chip system integration. Millimeter-wave chips have different requirements based on their application scenarios. In the Ka-band (26.5–40 GHz), high-power GaN and GaAs chips are preferred for satellite and long-distance communication. In contrast, the 60 GHz band is suited for short-distance high-speed communication and consumer electronics, making lower-cost CMOS and germanium silicon devices the preferred choice. This paper explores critical design considerations for SSPAs, focusing on common structures like envelope tracking, Doherty amplifiers, envelope elimination and restoration, and various linearization methods. We provide a clear comparison of their strengths and weaknesses to empower readers to select the optimal SSPA structure for their needs. Our review aims to facilitate informed decisions in the development of efficient and cost-effective SSPAs for advancing wireless communication technology.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.