Laura Jade Millson, Anne-Marie Broomhall, Tishtrya Mehta
{"title":"声临界点以上太阳振荡频率变化的纬度依赖性","authors":"Laura Jade Millson, Anne-Marie Broomhall, Tishtrya Mehta","doi":"10.1007/s11207-024-02369-w","DOIUrl":null,"url":null,"abstract":"<div><p>At high frequencies beyond the acoustic cut-off, a peak-like structure is visible in the solar power spectrum. Known as the pseudo-modes, their frequencies have been shown to vary in anti-phase with solar magnetic activity. In this work, we determined temporal variations in these frequencies across the solar disc, with the aim of identifying any potential latitudinal dependence of pseudo-mode frequency shifts. We utilised nearly 22 years of spatially resolved GONG data for all azimuthal orders, <span>\\(\\textit{m}\\)</span>, for harmonic degrees <span>\\(0\\leq l\\leq 200\\)</span>, and determined shifts using the resampled periodogram method. Periodogram realisations were created from overlapping, successive 216 day-long segments in time, and cropped to 5600 – 6800 μHz. Cross-correlation functions were then repeatedly generated between these realisations to identify any variation in frequency and the uncertainty. We categorised each mode by its latitudinal sensitivity and used this categorisation to produce average frequency shifts for different latitude bands (15<sup>∘</sup> and 5<sup>∘</sup> in size) which were compared to magnetic proxies, the <span>\\(F_{\\mathrm{10.7}}\\)</span> index and GONG synoptic maps. Morphological differences in the pseudo-mode shifts between different latitudes were found, which were most pronounced during the rise to solar maximum where shifts reach their minimum values. At all latitudes, shift behaviour was strongly in anti-correlation with the activity proxy. Additionally, periodicities shorter than the 11-year cycle were observed. Wavelet analysis was used to identify a periodicity of four years at all latitudes.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-024-02369-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Latitudinal Dependence of Variations in the Frequencies of Solar Oscillations Above the Acoustic Cut-Off\",\"authors\":\"Laura Jade Millson, Anne-Marie Broomhall, Tishtrya Mehta\",\"doi\":\"10.1007/s11207-024-02369-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>At high frequencies beyond the acoustic cut-off, a peak-like structure is visible in the solar power spectrum. Known as the pseudo-modes, their frequencies have been shown to vary in anti-phase with solar magnetic activity. In this work, we determined temporal variations in these frequencies across the solar disc, with the aim of identifying any potential latitudinal dependence of pseudo-mode frequency shifts. We utilised nearly 22 years of spatially resolved GONG data for all azimuthal orders, <span>\\\\(\\\\textit{m}\\\\)</span>, for harmonic degrees <span>\\\\(0\\\\leq l\\\\leq 200\\\\)</span>, and determined shifts using the resampled periodogram method. Periodogram realisations were created from overlapping, successive 216 day-long segments in time, and cropped to 5600 – 6800 μHz. Cross-correlation functions were then repeatedly generated between these realisations to identify any variation in frequency and the uncertainty. We categorised each mode by its latitudinal sensitivity and used this categorisation to produce average frequency shifts for different latitude bands (15<sup>∘</sup> and 5<sup>∘</sup> in size) which were compared to magnetic proxies, the <span>\\\\(F_{\\\\mathrm{10.7}}\\\\)</span> index and GONG synoptic maps. Morphological differences in the pseudo-mode shifts between different latitudes were found, which were most pronounced during the rise to solar maximum where shifts reach their minimum values. At all latitudes, shift behaviour was strongly in anti-correlation with the activity proxy. Additionally, periodicities shorter than the 11-year cycle were observed. Wavelet analysis was used to identify a periodicity of four years at all latitudes.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11207-024-02369-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02369-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02369-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Latitudinal Dependence of Variations in the Frequencies of Solar Oscillations Above the Acoustic Cut-Off
At high frequencies beyond the acoustic cut-off, a peak-like structure is visible in the solar power spectrum. Known as the pseudo-modes, their frequencies have been shown to vary in anti-phase with solar magnetic activity. In this work, we determined temporal variations in these frequencies across the solar disc, with the aim of identifying any potential latitudinal dependence of pseudo-mode frequency shifts. We utilised nearly 22 years of spatially resolved GONG data for all azimuthal orders, \(\textit{m}\), for harmonic degrees \(0\leq l\leq 200\), and determined shifts using the resampled periodogram method. Periodogram realisations were created from overlapping, successive 216 day-long segments in time, and cropped to 5600 – 6800 μHz. Cross-correlation functions were then repeatedly generated between these realisations to identify any variation in frequency and the uncertainty. We categorised each mode by its latitudinal sensitivity and used this categorisation to produce average frequency shifts for different latitude bands (15∘ and 5∘ in size) which were compared to magnetic proxies, the \(F_{\mathrm{10.7}}\) index and GONG synoptic maps. Morphological differences in the pseudo-mode shifts between different latitudes were found, which were most pronounced during the rise to solar maximum where shifts reach their minimum values. At all latitudes, shift behaviour was strongly in anti-correlation with the activity proxy. Additionally, periodicities shorter than the 11-year cycle were observed. Wavelet analysis was used to identify a periodicity of four years at all latitudes.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.