{"title":"MXene/epoxy 纳米复合材料的低温力学性能和液氧相容性","authors":"De-Yi Qu, Fang-Liang Guo, Wan-Dong Hou, Jun-Fei Long, Yuan-Qing Li, Shao-Yun Fu","doi":"10.1007/s42114-024-00975-7","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their great potential in saving weight, carbon fiber–reinforced epoxy composites are receiving great interests for the liquid oxygen (LOX) cryotank as the largest component in the spacecraft propulsion system. However, the application of epoxy resins as matrices in LOX composite cryotanks is severely constrained by their LOX incompatibility and poor cryogenic mechanical properties. To address these issues, two-dimensional MXene nanosheets as multifunctional fillers are introduced into an epoxy resin, and the effects of MXene on the cryogenic mechanical properties and liquid oxygen compatibility of the epoxy resin are comprehensively examined. It is interestingly observed that the mechanical properties at both room temperature (RT) and cryogenic temperature (90 K) of the epoxy resin, including tensile strength, elastic modulus, and fracture toughness, are significantly enhanced with the addition of low content MXene; and the MXene/epoxy nanocomposite with 0.10 wt.% MXene exhibits the optimal mechanical performances. MXene is also effective in enhancing the LOX compatibility of the epoxy, and the MXene/epoxy nanocomposite with 0.20 wt.% MXene completely passes the LOX impact test. In overall, the MXene/epoxy nanocomposite with simultaneously enhanced cryogenic mechanical properties and LOX compatibility is promising for applications in LOX composite tanks.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryogenic mechanical properties and liquid oxygen compatibility of MXene/epoxy nanocomposites\",\"authors\":\"De-Yi Qu, Fang-Liang Guo, Wan-Dong Hou, Jun-Fei Long, Yuan-Qing Li, Shao-Yun Fu\",\"doi\":\"10.1007/s42114-024-00975-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to their great potential in saving weight, carbon fiber–reinforced epoxy composites are receiving great interests for the liquid oxygen (LOX) cryotank as the largest component in the spacecraft propulsion system. However, the application of epoxy resins as matrices in LOX composite cryotanks is severely constrained by their LOX incompatibility and poor cryogenic mechanical properties. To address these issues, two-dimensional MXene nanosheets as multifunctional fillers are introduced into an epoxy resin, and the effects of MXene on the cryogenic mechanical properties and liquid oxygen compatibility of the epoxy resin are comprehensively examined. It is interestingly observed that the mechanical properties at both room temperature (RT) and cryogenic temperature (90 K) of the epoxy resin, including tensile strength, elastic modulus, and fracture toughness, are significantly enhanced with the addition of low content MXene; and the MXene/epoxy nanocomposite with 0.10 wt.% MXene exhibits the optimal mechanical performances. MXene is also effective in enhancing the LOX compatibility of the epoxy, and the MXene/epoxy nanocomposite with 0.20 wt.% MXene completely passes the LOX impact test. In overall, the MXene/epoxy nanocomposite with simultaneously enhanced cryogenic mechanical properties and LOX compatibility is promising for applications in LOX composite tanks.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00975-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00975-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Cryogenic mechanical properties and liquid oxygen compatibility of MXene/epoxy nanocomposites
Due to their great potential in saving weight, carbon fiber–reinforced epoxy composites are receiving great interests for the liquid oxygen (LOX) cryotank as the largest component in the spacecraft propulsion system. However, the application of epoxy resins as matrices in LOX composite cryotanks is severely constrained by their LOX incompatibility and poor cryogenic mechanical properties. To address these issues, two-dimensional MXene nanosheets as multifunctional fillers are introduced into an epoxy resin, and the effects of MXene on the cryogenic mechanical properties and liquid oxygen compatibility of the epoxy resin are comprehensively examined. It is interestingly observed that the mechanical properties at both room temperature (RT) and cryogenic temperature (90 K) of the epoxy resin, including tensile strength, elastic modulus, and fracture toughness, are significantly enhanced with the addition of low content MXene; and the MXene/epoxy nanocomposite with 0.10 wt.% MXene exhibits the optimal mechanical performances. MXene is also effective in enhancing the LOX compatibility of the epoxy, and the MXene/epoxy nanocomposite with 0.20 wt.% MXene completely passes the LOX impact test. In overall, the MXene/epoxy nanocomposite with simultaneously enhanced cryogenic mechanical properties and LOX compatibility is promising for applications in LOX composite tanks.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.