V. V. Lendyashova, I. V. Ilkiv, B. R. Borodin, D. A. Kirilenko, A. S. Dragunova, T. Shugabaev, G. E. Cirlin
{"title":"在硅上形成用于发光器件的薄砷化镓缓冲层","authors":"V. V. Lendyashova, I. V. Ilkiv, B. R. Borodin, D. A. Kirilenko, A. S. Dragunova, T. Shugabaev, G. E. Cirlin","doi":"10.1134/S1027451024700460","DOIUrl":null,"url":null,"abstract":"<p>The experimental data on the growth processes of GaAs layers on silicon substrates by molecular beam epitaxy are presented. The formation of a buffer Si layer in a single growth process has been found to significantly improve the crystalline quality of GaAs layers formed on its surface and to prevent the formation of antiphase domains on both off-cut toward the [110] direction and singular Si(100) substrates. It has been demonstrated that the use of cyclic thermal annealing at temperatures 350–660°C in the flow of arsenic atoms makes it possible to reduce the number of threading dislocations and increase the smoothness of the GaAs layers surface. Possible mechanisms that lead to improvement in the quality of the surface layers of GaAs are considered. It is shown that for the thus obtained GaAs layers of submicron thickness on singular Si(100) substrates the mean square surface roughness is 1.9 nm. The principal possibility of using thin GaAs layers on silicon as templates for forming on them light-emitting semiconductor heterostructures with active area based on self-organizing InAs quantum dots and InGaAs quantum well is presented. It is found that the resulting materials exhibit photoluminescence at an emission wavelength of 1.2 µm at room temperature.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 4","pages":"796 - 800"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Thin GaAs Buffer Layers on Silicon for Light-Emitting Devices\",\"authors\":\"V. V. Lendyashova, I. V. Ilkiv, B. R. Borodin, D. A. Kirilenko, A. S. Dragunova, T. Shugabaev, G. E. Cirlin\",\"doi\":\"10.1134/S1027451024700460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The experimental data on the growth processes of GaAs layers on silicon substrates by molecular beam epitaxy are presented. The formation of a buffer Si layer in a single growth process has been found to significantly improve the crystalline quality of GaAs layers formed on its surface and to prevent the formation of antiphase domains on both off-cut toward the [110] direction and singular Si(100) substrates. It has been demonstrated that the use of cyclic thermal annealing at temperatures 350–660°C in the flow of arsenic atoms makes it possible to reduce the number of threading dislocations and increase the smoothness of the GaAs layers surface. Possible mechanisms that lead to improvement in the quality of the surface layers of GaAs are considered. It is shown that for the thus obtained GaAs layers of submicron thickness on singular Si(100) substrates the mean square surface roughness is 1.9 nm. The principal possibility of using thin GaAs layers on silicon as templates for forming on them light-emitting semiconductor heterostructures with active area based on self-organizing InAs quantum dots and InGaAs quantum well is presented. It is found that the resulting materials exhibit photoluminescence at an emission wavelength of 1.2 µm at room temperature.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"18 4\",\"pages\":\"796 - 800\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1027451024700460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024700460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Formation of Thin GaAs Buffer Layers on Silicon for Light-Emitting Devices
The experimental data on the growth processes of GaAs layers on silicon substrates by molecular beam epitaxy are presented. The formation of a buffer Si layer in a single growth process has been found to significantly improve the crystalline quality of GaAs layers formed on its surface and to prevent the formation of antiphase domains on both off-cut toward the [110] direction and singular Si(100) substrates. It has been demonstrated that the use of cyclic thermal annealing at temperatures 350–660°C in the flow of arsenic atoms makes it possible to reduce the number of threading dislocations and increase the smoothness of the GaAs layers surface. Possible mechanisms that lead to improvement in the quality of the surface layers of GaAs are considered. It is shown that for the thus obtained GaAs layers of submicron thickness on singular Si(100) substrates the mean square surface roughness is 1.9 nm. The principal possibility of using thin GaAs layers on silicon as templates for forming on them light-emitting semiconductor heterostructures with active area based on self-organizing InAs quantum dots and InGaAs quantum well is presented. It is found that the resulting materials exhibit photoluminescence at an emission wavelength of 1.2 µm at room temperature.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.