Wei-long Guang, Qiang Liu, Fa-ye Jin, Ran Tao, Ruo-fu Xiao
{"title":"基于动力学模式分解的燃油泵间隙流分析","authors":"Wei-long Guang, Qiang Liu, Fa-ye Jin, Ran Tao, Ruo-fu Xiao","doi":"10.1007/s42241-024-0059-x","DOIUrl":null,"url":null,"abstract":"<div><p>The flow field structure within the clearances of turbomachinery is complex and diverse, exhibiting high-dimensional nonlinearity. How to accurately extract the main structures that affect the internal flow within the turbine from the complex clearance flow has always been a key issue. To explore the impact of the dynamic structure of the clearance flow on the mainstream region in a centrifugal pump, this study combines the dynamic mode decomposition (DMD) method to conduct a thorough analysis of the velocity and pressure pulsation frequencies in the multi-physics fields within the clearance. The study has identified the main characteristic structures under different physical conditions in the clearance and has established the relationship between the characteristic structure frequencies in different physical fields and the impeller frequency. The research indicates that the internal flow within the clearance affects the occurrence of vortices in the volute. Under design conditions, the velocity field within the clearance is primarily influenced by high-order harmonic frequencies of the impeller, and the pressure field is mainly affected by low-order harmonic frequencies of the impeller. This reflects the crucial influence of impeller frequency and inlet flow on the coherent structures within the clearance flow. The research results offer new insights and methods for analyzing complex internal flows in large turbomachinery.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of clearance flow of a fuel pump based on dynamical mode decomposition\",\"authors\":\"Wei-long Guang, Qiang Liu, Fa-ye Jin, Ran Tao, Ruo-fu Xiao\",\"doi\":\"10.1007/s42241-024-0059-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The flow field structure within the clearances of turbomachinery is complex and diverse, exhibiting high-dimensional nonlinearity. How to accurately extract the main structures that affect the internal flow within the turbine from the complex clearance flow has always been a key issue. To explore the impact of the dynamic structure of the clearance flow on the mainstream region in a centrifugal pump, this study combines the dynamic mode decomposition (DMD) method to conduct a thorough analysis of the velocity and pressure pulsation frequencies in the multi-physics fields within the clearance. The study has identified the main characteristic structures under different physical conditions in the clearance and has established the relationship between the characteristic structure frequencies in different physical fields and the impeller frequency. The research indicates that the internal flow within the clearance affects the occurrence of vortices in the volute. Under design conditions, the velocity field within the clearance is primarily influenced by high-order harmonic frequencies of the impeller, and the pressure field is mainly affected by low-order harmonic frequencies of the impeller. This reflects the crucial influence of impeller frequency and inlet flow on the coherent structures within the clearance flow. The research results offer new insights and methods for analyzing complex internal flows in large turbomachinery.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-024-0059-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0059-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of clearance flow of a fuel pump based on dynamical mode decomposition
The flow field structure within the clearances of turbomachinery is complex and diverse, exhibiting high-dimensional nonlinearity. How to accurately extract the main structures that affect the internal flow within the turbine from the complex clearance flow has always been a key issue. To explore the impact of the dynamic structure of the clearance flow on the mainstream region in a centrifugal pump, this study combines the dynamic mode decomposition (DMD) method to conduct a thorough analysis of the velocity and pressure pulsation frequencies in the multi-physics fields within the clearance. The study has identified the main characteristic structures under different physical conditions in the clearance and has established the relationship between the characteristic structure frequencies in different physical fields and the impeller frequency. The research indicates that the internal flow within the clearance affects the occurrence of vortices in the volute. Under design conditions, the velocity field within the clearance is primarily influenced by high-order harmonic frequencies of the impeller, and the pressure field is mainly affected by low-order harmonic frequencies of the impeller. This reflects the crucial influence of impeller frequency and inlet flow on the coherent structures within the clearance flow. The research results offer new insights and methods for analyzing complex internal flows in large turbomachinery.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.